

NOTICE
Apple Computer Inc. reserves the right to make improvements in

the product described in this manual at any time and without
notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE
SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. APFLE
COMPUTER INC. SOFTWARE IS SOLD OR LICENSED "AS IS". THE ENTIRE
RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER.

SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE,
THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES. 1IN NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted and contains proprietary information.
All rights are reserved. This document may not, in whole or
part, be copied, photocopied, reproduced, translated or reduced
to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer Inc.

©1979 by APPLE COMPUTER INC.
1¢26¢ Bandley Drive
Cupertino, California 95@14
(408) 996-101¢

All rights reserved.

Reorder APPLE Product #A2L@@18
(#39-0044-00)

THE APPLESOFT
TUTORIAL

Based on the Apple II Basic Programming Manual by Jef Raskin.
Reuritten for Applesoft by Caryl Richardson.

TABLE OF CONTENTS

WELCOME

CHAPTER 1
GETTING STARTED

Introduction

What you will need

Hooking up the TV

Plugging in the game controllers

The Disk II

The cassette recorder

The Apple keyboard: the RESET, SHIFT and ESC keys
Keyboard notation

Control, and other characters: the CTRL and REPT keys
Setting the tape recorder

The usual procedure for loading tapes

Listening to a computer tape: a helpful hint
Using a disk drive

The Menu

Stopping the computer

Setting the TV color

Playing Little Brick Out

CHAPTER 2
BEGINNING APPLESOFT

22
25
26
27
29
31
32
34
35
39
41

A first look at the PRINT statement

Applesoft’s format for numbers

More about RETURN

Easy editing features: the arrow keys

Putting colors on the screen: GR, TEXT, COLOR= and PLOT
PLOT error messages

Drawing lines

The game controls: PDL

Pigeonholes : an introduction to variables

Precedence among arithmetic operators, or who’s on first?
How to avoid precedence

CHAPTER 3
ELEMENTARY PROGRAMMING

44
48
5¢
5¢
52
53
54
55
59
59
60
61
62
64
67
67
68
68

Deferred execution: NEW, LIST, RUN and HOME

Elementary editing: DEL

Elementary aerobatics: GOTO loops

Some more things that make life easier: more editing tips
The moving cursor: editing with the ESC key

A word about learning Applesoft BASIC

An accident about to happen

The truth: arithmetic and logical assertions

Order or precedence for operations

The IF statement

Saving programs on diskette: SAVE, CATALOG, RUN and LOAD
Saving programs with a cassette recorder: SAVE

More graphics programs: REM

FOR/NEXT loops

A wrong program

A last example of nested loops

Getting flashy: INVERSE, FLASH and NORMAL

PRINTs charming: comma, semi-colon, TAB, HTAB and VTAB

CHAPTER 4
LOTS OF GRAPHICS

74
78
79
81
81
82
84
85
87
89
91

Talking to a program on the RUN: INPUT and a bouncing ball
Off the walls: a program with lots of bounce
Making sounds: PEEK(-16336)

Noise for the bouncing ball

For higher notes

Random numbers: RND and INT

Simulating a pair of dice

Subroutines: drawing horses using GOSUB and RETURN
Traces: TRACE, NOTRACE and END

A better horse-drawing subroutine

High-resolution graphics: HGR, HCOLOR= and HPLOT

CHAPTER 5
STRINGS AND ARRAYS

199
195
195
198
119
111

Stringing along: LEN, LEFT$, RIGHTS$, MID$ and CLEAR
Concatenation got your tongue?: putting strings together
More string functions: VAL and STRS

Introducing arrays: DIM

Array error messages

Conclusion

APPENDICES

114

126

128
128
128
129
129
13¢

131
‘131

132
133

133.

134
136
137

140

143

147
147
148

Appendix A:

Appendix B:

Appendix C:

Summary of Commands

Reserved Words in Applesoft

Editing Features

Left and right arrow keys
Pure cursor moves
Deleting program lines
Clearing the screen
Summary of edit features

Appendix D: Firmware Applesoft versus

Cassette or Diskette Applesoft

Introduction
General discussion
An important note

Part
Part
Part
Part

Part

L
2
3:
4

5:

The Applesoft II firmware card

Diskette Applesoft

Cassette tape Applesoft

Differences between diskette or cassette
Applesoft and firmware Applesoft

Memory locations used by DOS and by
Applesoft BASIC

Appendix E: Error Messages

Appendix F: The 01d Monitor ROM
Using the old monitor ROM
Recovering from accidental RESETs

WELCOME

This manual is designed for people who want to learn to program
in Apple’s Applesoft BASIC. With this manual, and an Apple
computer, and a bit of your time and attention, you will find
that there is nothing difficult about learning how to program a
computer. At first, as with anything new, programming will be
unfamiliar, but this manual was designed to alleviate any
apprehension you might have. First of all, there are no hidden
secrets that you have to know before you can read this manual.
Everything is revealed, and only one thing at a time is
explained. If you start at the beginning, try everything as

it comes along, and make up your mind to take your time, it is
pretty much guaranteed that you will learn how to program.

The real secret is taking your time and trying everything. You
cannot learn programming by merely reading this or any other
book. Like learning to ride a bicycle or play the fiddle, you
must learn by doing. You must make mistakes and correct them,
and not feel too bad when you do make mistakes.

If you already know how to program, a quick run through this
book will make you familiar with the features of Applesoft
BASIC. We suspect that you will be quite impressed with the
ease of doing high resolution graphics and using the other
features that make the Apple a fine computer for a wide variety
of applicatioms.

This book is a tutorial manual. For reference purposes, the
companion volume, the Applesoft BASIC Programming Reference
Manual (Apple product number A2LY@¥6) should be used. Its
extensive indices, handy reference card, and many technical
details make it the book you will use after you have learned
the basics from this volume. One last thing--if you have read
the Apple II BASIC Programming Manual (Apple product number
A2L.@@@5X) then this manual may seem a bit familiar. If you
think so, you are right. It closely follows that manual, which
(we are happy to report) has been very well recieved by
customers and reviewers alike. We hope you enjoy using this
manual as much as we have enjoyed writing it.

Vi

R e e e e el
Co~N~SNUuPwHESROVULE DD WD

Introduction

What you will need

Hooking up the TV

Plugging in the game controllers

The Disk II

The cassette recorder

The Apple keyboard: the RESET, SHIFT and ESC keys
Keyboard notation

Control, and other characters: the CTRL and REPT keys
Setting the tape recorder

The usual procedure for loading tapes

Listening to a computer tape: a helpful hint
Using a disk drive

The Menu

Stopping the computer

Setting the TV color

Playing Little Brick Out

INTRODUCTION

This manual will show you how to plug in your Apple (easy) and
will be a guide as you learn to program it (also easy). If you
are an 0ld Hand at programming, you will find some new features
and conveniences in Applesoft BASIC that make programming a lot
more fun. If you are a Newcomer to programming, you will also
find many features and conveniences in Applesoft BASIC that make
programming a lot of fun. But, if you are a Newcomer, be warned
that programming, though not difficult, can only be learned by
doing. More will be said on this topic later, but
remember--this is a book to be used, not merely perused.

If you purchased your Apple from an authorized Apple dealer, the
dealer will be willing to let you set your Apple up in the shop
to make sure you know how to set it up at home. If you received
it as a gift or through the mail, it is not difficult to hook
up--it is as easy as setting up a stereo system, and no
technical knowledge is needed at all.

If you have not already done so, please take a few minutes to
complete and mail your OWNER/WARRANTY REGISTRATION CARD. This
Registration Card will register your Apple with the factory,
give you membership in the Apple Software Bank, and include you
in our list of Apple owners. If you don’t send us this card you
will not receive any newsletters, information about new
accessories for your Apple, nor any of the other information
that is frequently mailed to Apple owners. So please mail in
the completed card.

The Apple described in this manual has the Applesoft BASIC
computer language and the Autostart ROM installed on the main
board. If your system differs from this one, for instance, if
you have an Apple II with Integer BASIC and the Old Monitor ROM,
you can find the information you need in one or more of the
appendices in the back of this book. If you have Applesoft on
cassette or diskette watch for the

|

symbol. This symbol indicates information that is of special
interest to cassette and diskette Applesoft users. If these
sections apply to you, be sure to read them carefully. If you

don’t, you may lose your program or part of the Applesoft
program itself.

Another symbol to watch for is the

\\@/}

The purpose of this symbol is to alert you to an unusual
Applesoft feature. The situation described may cause you to
lose your program.

WHAT YOU WILL NEED

This manual was in the accessory box. This box should also

contain

1. The power cord (the cord that plugs into the outlet on the
wall).

2. A set of two game controllers (the black boxes with buttons
and knobs, connected with a cord).

3. A cable to connect the Apple to a tape recorder. This cable
has two plugs on each end.

4, Some cassette tapes. These tapes contain programs for the
Apple.

In addition to the Apple itself and the contents of the
accessory box, you will need two more items chosen from the
options below (none of these items are supplied).
1. You will need one of the following items (it’s useful to
have both, but only one is necessary).
a. A cassette recorder.
OR
b. The Apple Disk II disk drive with a controller card.

2. You will also need one of the following items:

a. A color TV monitor and a cable that has a phono plug
(also called a male RCA-type connector) at one end and
something to match the monitor at the other end. The
dealer that sells you the monitor can supply the
cable.

OR

b. An ordinary home color TV and an "RF Modulator" with
the connecting cables. The RF Modulator changes the
signal put out by the Apple so that it matches what
your TV expects. A number of Modulators are
available. There is one made especially for the Apple
called the SUPERMOD II. Your computer dealer can
probably sell you one, or, if not, it can be ordered
from

M&R Enterprises
P.0. Box 61(¢11
Sunnyvale, CA 94088

The Modulator comes with instructions on how to hook it
up. Your TV’s ability to receive normal programs will not

be diminished (or enhanced) by having the Apple hooked up
to it.

A black and white monitor or TV will work fine, but will
not let you take advantage of Apple’s ability to generate
color pictures. Colors described in this manual will
appear as different shades of grey on a black and white
monitor or TV.

HOOKING UP THE TV

If you have a color (or black and white) monitor, just comnect
the appropriate cable from the jack marked VIDEO OUT (on the
rear of the Apple) to the input of the monitor.

If you have an ordinary TV, you will have to install an RF
modulator. Open the top of the Apple by pulling straight up on
the back of the 1id using both hands, one on each side. Then
install the modulator following the directions that come with
it.

PLUGGING IN THE GAME CONTROLLERS

With the 1id open, plug the controllers’ rather delicate plug
into the GAME I/0 socket located in the right-rear cormer (front
view) of the Apple board. Be very careful and make sure that
all the pins go into the socket. The plug’s white dot should be
toward the front (keyboard end) of the computer.

[
-3

munnas sy

PR A A AR RGBS
marmenaa

&y
LR
Bz
=z
Bz
5w
=%
5
3
&3
L
e
"y
=
&
®E
B &
LB
=3
=¥
"t
5%
LE3
%z
B,

NBROXABAANARBRATAHRARR UL
HOBENAARTAARBRANIGRDARBRDEL

N

THE DISK Il

If you have a disk drive, unpack it carefully. Then read the
preface and the first chapter (pages 2 through 8) of the Disk
Operating System (usually called DOS) manual that came in the
Disk II package. Those pages will give you complete
instructions on how to set up your disk drive.

4

THE CASSETTE RECORDER

(if you are not using a disk drive, or
if you are going to use both recorder and disk)

Use the supplied cable (the one with two plugs on each end) to
connect the Apple to your cassette tape recorder. Connect one
black plug to the MIC or MICROPHONE jack on the recorder, and
the other black plug (on the opposite end of the cable) to the
jack on the back of the computer marked CASSETTE OUT. Connect
the grey plug on the recorder end of the cable to the recorder’s
EAR or EARPHONE or MON or MONITOR jack on the recorder
(different brands use different words). Connect the grey plug
on the computer end of the cable to the jack marked CASSEITE IN.
"OUT" means "out of the computer" and "IN" means "into the
computer."” All that remains is to plug the cassette recorder’s
power cord into a wall outlet, and it will be ready to use.

Now close the top of the Apple. Plug the Apple end of the
computer’s power cord into the Apple (on the rear of the Apple,
next to the power switch), and the other end into a three-prong
grounded wall outlet. Now the Apple is completely set up, and
you have only to read on to begin exploring the fascinating
world of personal computing.

THE APPLE KEYBOARD

The first thing to do, now that all the connections have been
made, is to turn the Apple on. The switch is on the back of the
computer next to where the power cord plugs in. Push it into
the upward position. You will be rewarded by the "POWER" light
at the bottom of the keyboard coming on. The POWER light is not
a key, and cannot be depressed. The title "APPLE II" should
also appear at the top of the screen along with a] and a
blinking square called the "cursor" to the far left.

s e T] * =
! 1 PR D] 8] 3] ®F] 8] 5] 3] ¥ B il
i
[4 REPT RETURN
] T3] €] €] 5]] OS] [X'F] (U] [X-3| |42 '
BELL. +
o kA S 3} 8] =M [J K L iy Jn
A < > ?
e z hx e hovafle JunNghomof . z bl

- | .

APPLE IC

If your screen display doesn’t conform to the description, don’t
worry. If you have the Applesoft II Firmware Card that plugs
into the Apple’s main board (Apple Part Number A2BP@@#9X), make
sure the switch on the back of the card is in the up position.
Then turn your Apple off and turn it on again. If your screen
display still doesn’t look right, or if you don’t have Applesoft
on a card, press the key marked RESET in the upper right-hand
corner of the keyboard. The Apple should go "beep" when the
RESET key is released.

(A— ' -)

If your Apple doesn’t seem to be responding correctly to your
instructions (you’ll find out what correct responses are as you
become familiar with this manual), a press of the key
will usually remedy the problem. If that doesn’t work, turning
the Apple off and then turning it back on again will probably do
the trick.

If you have a disk drive, turning your Apple on will give the
following results. A few clacking noises will come from it,
followed by a soft whirring sound, and a red light labelled "IN
USE" will come on. The disk drive will whir and whir until it
seems that it will never stop. As a matter of fact, it won’t:
until you stop it by pressing the key. Do that now.
The title "APPLE II" disappears, and the prompt and cursor
appear at the bottom left of the screen.

Study the keyboard. If you are familiar with standard
typewriters, you will find a few differences between the Apple
keyboard and a typewriter keyboard. First, there are no lower
case letters. You can get only capital letters on the Apple.
This is all you need for programming in Applesoft BASIC.

coaaiers =

] T ITLITE
LT LLLLLLE T
BHHEEDBB

& f T R T),

Using the diagram, locate the two keys on the keyboard.
The reason the keyboard has the keys is to allow for
nearly twice as many characters with the same number of keys. A
keyboard with a separate key for each character would be very
large, making it hard to find any desired key.

If you press a key which has two symbols on it, the lower symbol
will appear on the screen. If you press the same key while
holding down either of the keys, the upper symbol will
appear on the screen. You will find that the SHIFTed comma and
the SHIFTed period are < and > respectively. You will also find
other symbols on the Apple keyboard that are not on a standard
typewriter. Feel free to try operating any of these keys.

If there is no upper symbol on a key, then holding down the
while the key is pressed has no effect. There are two
exceptions: the [@ and the .

I L b
Enl!un :: i

The SHIFTed @) key gives a right hand square bracket (]). The
key has the word "BELL" above the "G". But does
not put a bell on the screen, it just puts a "G" there. The
meaning of the word "BELL" on the key will be explained
later.

An important difference between using the Apple keyboard and
most typewriters is that you cannot employ a lower case "L" for
the number "1". Of course, there is no lower case "L" on the
Apple, but some typists will have to break the habit of reaching
for the letter "L" when they mean the number "1'".

When the Hindu mathematicians invented the open circle for the
numeral zero, they didn’t use the Roman alphabet. So they chose
a symbol that, while not conflicting with their alphabet,

looks just like our letter "0". The computer (and any
straight-thinking individual) will want to keep zeros and oh’s
distinct. The usual method for doing this, on the Apple and
many other computers, is to put a slash through the zero. Now
you can tell them apart. The keyboard and the TV display both
make the distinction clear. Try them.

After a bit of typing, the screen tends to get full of stuff.
To clear the screen, you need to use the key marked . ESC
stands for the word "ESCape." The [EJ key does not show up on

the Apple’s screen. Press [Ed , and then type an "at" sign (@)
bv holding down either key and pressing the key marked
"P'". Notice that the ESC key, unlike the key, does
not need to be held down while typing another key. You have to
operate three keys to clear the screen. First press [E8 and
release it. Then, while holding down , press P. Instant
gratification: the contents of the screen promptly disappear.

fi—)

1

BoBaossnee G
=LLLL]
ELLLICLLLL LT
)
LI L LT

KEYBOARD NOTATION

At this point we will introduce a simple notation.

As you have seen, when a key is to be pressed, such as the key
for the letter "H", that key’s symbol will be shown: H. To
indicate pressing several keys in succession, we will simply
list the keys in the order to be pressed: DEBHOE

On occasion, you will need to hold down one key while pressing
another key. For example, to type a dollar-sign ($) you must
hold down the key while you press the 4 key. Whenever

this dual action is required, we will show the symbols for both
keys, one above the other.

4

The upper key is to be held down while the lower key is pressed.
Here’s how to clear the screen, using the new notation:

SHIF
el
G

Ty Tt

CONTROL,
AND OTHER UNSAVORY CHARACTERS

When you press the key, the numeral 5 appears on the TV
screen. You probably believe this is true, but try it anyway.
If you hold the key down while pressing the key, a
percent sign (%) should appear on the screen. Does it? The
key permits some of the keys on the keyboard to have two
different functions. Several of the keys also have a third
function. The third function is obtained by holding the
key down while other keys are pressed. "CTRL" stands for the
word "ConTRoL." Instead of putting new characters on the screen
when you use the key, the computer responds by performing
certain actions. Control characters never appear on the screen.

= I [Tl [[i m
LY SN N (W] Ny (W) [WEN] [WL.99] () () [ens) [
= = = — .
A= = 2
| W ZJJ X NCIH VLB LN ILM) [] / i ‘

Hold the key down and press [@

CTRL
BELL
G

It doesn’t go "ding", but it does go '"beep." Whenever the
computer wishes to call your attention to something, it will
sound the beeper. @ is called "BELL" for historical
reasons: the present keyboard design is based on that of the
Teletype. On that venerable machine, rings a real
bell.

Another key that is not usually found on typewriters is the

[f3) which stands for "REPeaT.'" Holding down the [GEd) key
while you press any other key just makes that key’s character
appear repeatedly on the sceen. You must first press and hold
the key for the character you wish repeated and then hold down
the key. Experiment with it.

There is also a key marked A on the keyboard. On
machines in the past, this was the '"carriage return" key. On
the Apple, it causes the blinking cursor to "return" to the
screen’s left edge, but it is also a special message to the
computer. More about this message later. If you happen to
press [EEND) , you will sometimes get a "beep" and the message

10

TSYNTAX ERROR

ear on the screen. For the time being, ignore this

,-; BBEnans
1 B]:I"JGITI L]

_ne only keys left unmentioned are the and keys. They
the cursor to the left and the right. They will be

ined more fully later. Test out these keys and any others
can find. There is nothing you can do by typing at the

ocard that can cause any damage to the computer. Unless you
with a hammer. So feel free to experiment. With your

rs.

aE)

©w = g B
SETTING THE TAPE RECORDER

(if you are not using a casette recorder,
skip to the section called "USING A DISK DRIVE".)

Now press the key. The right hand square bracket] and
the blinking cursor that show on the screen’s left edge let you
know that you are "in Applesoft" or have Applesoft "up'" (as they
. Now you are ready to set the volume control on the tape

recorder.

n vou play a tape recorder, it is usually with the intent of
ing sounds that you can hear. If it is too soft, you miss
some of the words or music. If it is too loud, it is annoying.

1

When you play the tape recorder into the Apple, it is with the
intent of putting the tape’s information into the computer. If
the volume setting is too soft, the Apple will miss some of the
information, and it will complain by giving an error message.

If the volume setting is too loud, the Apple will also complain.
To find the right volume setting, you will use a trial-and-error
method. You will play an Applesoft tape softly to the computer
and see if the information got in OK. If it doesn’t work, you
will try the tape again, a little louder this time. If that
doesn’t work, you will make it a little louder still.

Eventually the volume will be just right for the Apple, and it
will say so with a beep.

To clear the screen for action type

@
Place the tape marked COLOR DEMOSOFT into your recorder. For
each position of the volume control you are going to do the
following:
1. Rewind the tape to the beginning.

2. Start the tape playing.

3. Type:

TLLL-

When you do this, the cursor will disappear. It may take up to
15 seconds before something happens. There are these
possibilities:

a. The message *SYNTAX ERROR appears.

b. Nothing at all happens.

c. The message ERR or ERRERR appears (with or without a
beep) .

d. The computer goes 'beep" and nothing appears.

In case a, do not reset the volume .control, but go back to step
1 where you rewind the tape.

12

In cases b and ¢, make sure you waited for 15 seconds before

iving up. If there is no prompt character or cursor, and the
Apple does not respond to its keyboard, press , set the
volume control a bit higher and go back to step l. Once in a
great while the LOAD command may not work properly, and the
cursor will appear on the screen immediately without waiting for
the tape to be LOADed. If this happens just turn your Apple off
and then on again with the power switch on the rear of the
computer, and then try LOADing the tape again.

In case d, you are on the right track. When you hear the beep,
wait another fifteen seconds. Either you will get an error
nessage (case c), or the prompt character (]) and the blinking
cursor will reappear. If they do reappear, stop and rewind the
tape. Mark the position of the recorder’s volume control, so
that you can use this setting each time you LOAD a tape in the
future. Then type

A
RETURN

The screen should look like this:

THEN
THE RIGHT EO0

RETURH

SZTAHOARD CF
EALEIDOSCOF

WHICH WOULD YOU LIKE?Y

THE USUAL PROCEDURE FOR LOADING TAPES

(once the recorder”s volume control has been set correctly)

1. Rewind the tape.
2. Start the tape playing.
3. Type LDAD

After you press the cursor will disappear. Nothing
happens from 5 to 2¢ seconds, and then the Apple beeps.

This means that the tape’s information has started to go
into the computer. After some more time (depending on how
much information was on the tape, but usually less than a
few minutes) the Apple beeps again and the prompt character
and the cursor reappear.

13

4. Stop the tape recorder and rewind the tape. The information
has been transferred, and you are finished with the tape
recorder for the time being.

5. Type RUN and press , and your program will begin to
execute.

1

If your Apple is in the Applesoft BASIC computer language, the
tape you are LOADing must be in Applesoft too. Trying to LOAD a
tape in the wrong computer language gives results that are
pretty much unpredictable. Strange error messages and odd
characters may appear on your TV screen, you may loose keyboard
control, or any number of other odd things can happen. If this

happens to you, turn your Apple off and then back on again to
get everything back to normal.

Computerniks use many different words to describe the process of
taking information from a tape and putting the information into
the computer. The computer is said to "read" (pronounced
"reed") the tape. The information on the tape is said to be
"entered" or "read" (pronounced '"red") into the computer. The
act of reading a tape is also called '"loading" a tape into the
computer and the information on the tape is said to be "loaded
into" the computer. All these expressions are ways of saying
the same thing.

A HELPFUL HINT

What is it that the computer finds so interesting about these
tapes? Listen to one of them. It’s not music to your ears.

Yet you can recognize some of the sounds the computer listens
for. The information starts with a steady tone. Then there is
a short "blip" followed by more of the steady tone. The tone is
at 1¢¢¢ cycles per second. This pitch is just below the C two
octaves above middle C. After the tone comes a burst of sound
rather reminiscent of a rainstorm.

When you are used to the sound of a good tape, you can quickly
check a tape by ear to see if it is a computer tape or not. If
you can tell what the tape contains by listening to it, you are
a mutant, and will go far in the computer world.

14

USING A DISK DRIVE

(Skip this section if you are not using a disk drive.)

A disk drive is much quicker and easier to use than a cassette
recorder, however, diskettes and disk drives are delicate
creatures, and some care must be taken to protect them. You
will find information on their care and feeding on pages 5
through 6 in your DOS manual in the section called CARE OF THE
DISK II AND DISKETTES. Read that section carefully if you
haven’t already.

The last section in the first chapter of the DOS manual is
called INSERTING AND REMOVING DISKETTES. Get the System Master
diskette from its package and insert it with the label facing up
and the oval cutout toward the back of the disk drive, as
described in the DOS manual.

One of the features that make the Disk II so easy to use is its
ability to store and retrieve several different groups of
information. The groups of information are filed on the disk
under names called file names. A program that keeps track of
addresses, for instance, might be called ADDRESSES on the
diskette.

The programs that keep track of files, save and retrieve them,
and do lots of other housekeeping tasks are what make up the
Disk Operating System or DOS. The process of adding the DOS
capabilities to Applesoft (or ‘to any other language used by your
Apple) is called "booting DOS" or "booting the system".

There are several ways to boot DOS. One way is to simply turn
your Apple off and turn it on again. The Disk drive’s red "IN
USE" light will come on again, and the Disk II will make the
same whirring and clacking noises it made when the Apple was
turned on for the first time. This time the disk drive will
stop whirring on its own. When the whirring stops and the red
light goes off, the title APPLE II will disappear and a message
will come on the screen.

DISK I1 MASTER DISKETTE VERSION 3.2
16-FEB-79
COPYRIGHT 1979 APPLE COMPUTER INC.

bl |

15

When you get this message, you know that DOS is booted. The

right-hang square bracket and the blinking cursor that appear at

the bottom left corner of the screen indicate that the Apple is
" ”

in the Applesoft language (or has Applesoft "up", as they say)
and is ready for instructions.

Another way to boot DOS is to type

G L]

on your Apple. If the controller card is not plugged into slot
number six then type

#
3

followed by the number of whatever slot the card is plugged into
and then .

The System Master is a very special diskette. It contains
programs you’ll need in order to get the most out of this manual
as well as many other useful programs. To see what programs are
on the diskette, use the CATALOG command. Simply type

CATALOG

and a list of filenames will appear on the screen.

16-FEB-79
COPYRIGHT 1979 APPLE COMPUTER INC.
ICATALOG
DISK VOLUME 3.2

th

4
g
4

The first program you need is called COLOR DEMOSOFT. Locate the
name COLOR DEMOSOFT in the catalog. Now type

DX OOCE
mMP=-OOTTM
mo-tor
o —o
m
mei
000 IMXXOM o
QO O =X .
=X o =0 N
zZh M o0
x
5

L
DX M

0.

D
22

5
E

STRUCTIONS

RUN COLOR DEMOSOFT

and then press . The screen should look like the
photograph on the next page.

16

HFFLE DEMOMS

WHICH WOULD YOU LIKET

THE MENU

Computerniks call this list of numbered descriptions a 'menu."
It works like a menu at a roadside cafe. If you want scrambled
eggs with hash brown potatoes, toast, jelly and coffee you can
just say, "I’11 have a number 5." Try selecting one of the
color demonstrations by typing its number (followed by a

, of course). When you are viewing one of the demos,
just press the to get back to the "menu."

STOPPING THE COMPUTER

To stop the computer, use

@H'
'El

This will cause the prompt character and blinking cursor to
appear. The prompt character tells you that it is OK to proceed
with typing information to the computer. That is why it is
called the prompt character: it "prompts" you to type something.

Once the computer is stopped, it may be started again by typing
RLIN

(and, of course, , but you hardly need to be told that
anymore. In fact, you won’t be from now on.)

Use

EH'
ll!l

17

to stop the computer, and

RUN

to start it again. Try this a few times.

SETTING THE TV COLOR

If the "menu" is not on your screen, boot DOS and RUN the
program called COLOR DEMOSOFT if you are using a disk drive.

Or, if you are using a cassette recorder, follow the Usual
Procedure for loading the tape marked 'COLOR DEMOSOFT". One of
the items on the menu is called STANDARD COLOR NAMES. We will
use this DEMO to set the TV color. Type the number of the COLOR
NAMES DEMO, 1, and press « A number of bars of light
(perhaps in color) will appear. Under each bar is a four letter
abbreviation of a color name. The full names are:

® BLACK 8 BROWN
1 MAGENTA (a slightly bluish red) 9 ORANGE
2 DARK BLUE 1¢ GREY

3 PURPLE (a light purple, lavender) 11 PINK

4 DARK GREEN 12 GREEN
5 GREY 13 YELLOW
6 MEDIUM BLUE 14 AQUA

7 LIGHT BLUE 15 WHITE

If you have a black-and-white television or monitor, adjust the
brightness and contrast until you are pleased. Of course, if

the picture is flipping over, stop it the way you would for any
TV show. If you have a color set, a bit more work is necessary.

ff\d)

.

These colors will be different in Furope and some other parts of
the world.

18

Remember that this color business is quite subjective, and that
vou can do whatever you want with the color. The following
instructions will give the picture that we like, using the
standard colors. But it’s your eyes you must please. Besides,
the optimum settings will vary with different amounts of room
light.

Turn off any Automatic Color switch. On some sets it is marked
"AUTO COLOR" or simply "AUTO". Turn the TV set volume control
all the way down (but don’t turn the set off). Four controls
are now important: Picture, Brightness, Color and Hue. Some
sets have a knob marked "Contrast" rather than "Picture," but it
does the same thing. Turn the Picture control to its dimmest
position, and then turn down the Brightness until the background
just goes completely dark. Turn the Color control to the middle
of its range. Now turn up the Picture control to make things
brighter. Do not make it so bright that the colors "spill" off
the edges of the bars too much.

Now adjust the Color knob. At one extreme, all color is lost
and the picture is black and white. This setting is handy when
you are just showing text on the screen. Adjust the Color
control until the colors are intense but not "blooming'" or
spilling into one another. Lastly, adjust the Hue knob until
all the colors agree with their names. Purple, Pink and Yellow
are especially sensitive indicators. Also, make sure that the
three Blues are distinct.

When the TV set’s colors are OK, press the key and the
menu will reappear. Now try DEMO 2, which shows the color bars
with their code numbers. Also try the other demonstrations.
You’ll never believe how talented your TV is until you replace
the local stations with your Apple.

PLAYING LITTLE BRICK OUT

RUN the program called LITTLE BRICK OUT from your diskette. Or,
if you have a cassette recorder, put the tape labeled "LITTLE
BRICK OUT" into your recorder, and use the Usual Procedure for
getting the tape loaded. The screen will look like the photo on
the left when you RUN the program. Then, when you press the
space bar, a description of the game will appear on the screen.

19

P2222203333002233300338332338023223%333848%1

RICK ouT IS 1c BOﬁRD unns

WHICH YOU TO KNOCK DOWN

L OF BRI L
K BY YOU!

COPYRIGHT 1979 APPLE COMPUTER INC

C(PRESSING THE ESC KEY WILL END THE GAME)

x
b4
b 3
3
3
x
3
3
%
z
z
z
X
X
x
3
E
z
H
PRESS THE SPACE BAR TO BEGIN....H ;
3

P
z
:

222222233228 223390300232390030032883222¢

When asked, type your name, and then press . We will
type, for example, (as it appears on the screen):

J. APPLESEED

The Apple will respond by drawing the game board complete with
paddle. The numbers just below the graphics display are the
number of points you can get for hitting bricks from the
appropriate columns. The farther you get through the brick
"wall", the more points you get per brick.

If you type a name that is more than 12 characters long, the
program will truncate the name to a length it is more
comfortable with (12 characters).

Sometime you may accidentally press the key instead of
the key (it can happen); the screen will light up.
Don’t panic. Just type

RUN

Don’t forget that we are no longer mentioning RETURN every
time it is necessary.

Try deliberately making some errors, such as "accidentally"
pressing the key, so that you can get some confidence in

your ability to recover from errors.

Meanwhile, back at the LITTLE BRICK OUT program, the Apple
instructs you to

PUSH PADDLE BUTTON TO BEGIN GAME

so grab the game control and begin the game.

"Which control?" you ask. Try them both and see. Your Apple
will tell you if you have chosen the wrong one.

20

A first look at the PRINT statement

Applesoft’s format for numbers

More about RETURN

Easy editing features: the arrow keys

Putting colors on the screen: GR, TEXT, COLOR= and PLOT
PLOT error messages

Drawing lines

The game controls: PDL

Pigeonholes : an introduction to variables

Precedence among arithmetic operators, or who’s on first?
How to avoid precedence

21

BEGINNING APPLESOFT

If you are in Applesoft, the square bracket prompt character
(1), followed by the blinking cursor, will appear at the left
edge of the screen each time you press . Get into
Applesoft and, if you have a disk drive, boot DOS.

A FIRST LOOK AT THE PRINT STATEMENT

Now that you have the Applesoft prompt character (1) and the
blinking cursor on the screen, (and your diskette is booted if
you have a disk drive) you are ready to begin using the
Applesoft language. Type

PRINT “HELLO"
and the computer will print the word
HELLD

on the next line. If it didn’t, ask yourself this question:
"Did I forget the 2" If you misspell the word "PRINT",

you will get this error message:
TESYNTAX ERROR

1f you forget either the first quote or both quotes, the
computer will print a zero (you can tell it’s a zero by the
slash):

@

If the final quote is the last character before the 5
you don’t have to type it: the word "HELLO" will be printed with
or without it. It‘s a good idea to put the end quote in anyway,
though. The habit of putting in the final quote will become
important later. This manual will assume that you use the final
quote.

The statement

PRINT “HELLO"

is an instruction to the computer telling it to display on the
screen all the characters between the quotes, in this case a
word of greeting. You can use the PRINT statement to tell the
computer to display any message you wish. However, if you type

22

much beyond 240 characters, the computer will start to beep,
then give you a backward slash and let you start over again.

Now try the statement

PRINT "15@"

The computer obediently prints the number 15@ on the next line,
as expected. But type

PRINT 158

and the computer again prints the number, without any fuss or
error message about the missing quotation marks. In fact, the
Apple will let you PRINT any number at all without enclosing it
in quotes.

Without further study, the Apple can be used as a simple-minded
desk calculator.

Try this on your Apple:

PRINT 3 + 4

The answer, 7, appears on the next line. The Apple can do six
different elementary arithmetic operations:

1. ADDITION. Indicated by the usual plus sign (+).
2. SUBTRACTION. Uses the conventional minus sign (-).

3. MULTIPLICATION. Many people use an "X" to represent
multiplication. This could be confused with the letter "X".
Some people use a dot (.), but this could be confused with a
period or a decimal point. So the Apple uses an asterisk (*).
To find 7 times 8 (in case you don’t remember the answer), just
type

PRINT 7 # B8

and have your memory jogged.

23

4. DIVISION. As is customary, use a slash (/). To divide 63 by
7, type

PRINT &3 / 7
and the correct answer will appear.

Try dividing 3 by 2. The answer is one and one half. The Apple
gives the answer to you in the decimal form: 1.5.

One thing we should point out here is that you can do more than
one arithmetic operation in the same instruction. For example,
it is legal to say

PRINT 3 + 53 + 9 + 4

The exact rules governing such usage will be given later, but
you can experiment with it now if you wish.

6. EXPONENTATION. It is often handy to multiply a number by
itself a given number of times. Instead of bothering to write

PRINT 4 #+ 4 # 4 % 4 % 4

you can substitute the shorthand

PRINT 4 ™~ B

The upward pointing arrow is typed:

There is nothing special about exponentiation. It is just an
abbreviation for repeated multiplication! In non
computer-notation, this would be written with a superscript
five, like this: 45

159
JPRINT
150

aPRINT
gERINT
gPRINT 63 7 7

gPRINT 3+5+9+4

1
?PR NT 4 x 4 ¥ 4 x 4 % 4
ez

1
4
INT 4 ~ S
4

63

b| |

24

APPLESOFT’S FORMAT FOR NUMBERS

Type
PRINT 45. 34¢

Your computer responded with
45. 34

and didn’t PRINT the trailing zero. The Apple does not PRINT

leading or trailing zeros, that is, zeros that are at the
beginning of a number and to the left of the decimal, or zeros

that are at the end of a number and to the right of the decimal.

Very, very small numbers (between about .@@000000000GGEGGGRGGR
900000000000¢00003 and -.0¢00R00ER00FGRII0RI0B00RE00ER0G0R0000
@#3) will be converted to zero by the Apple. (We hope that was
the right number of zeros.) An easier way to write these
numbers is 3 * 1¢~ - 39 and -3 * 1§~ - 39. Don’t take our word
for it. Try it yourself.

Now type

PRINT 985788. &298

Surprise! The last two digits are lost, and the number left
behind is the closest approximation the computer can think of.
This process is called "rounding". Try typing

PRINT 7B3. 6898

Your computer did not round the number, but PRINTed it just the
way you typed it. Madness you say? Ah, but there is a method
to this seeming madness. Numbers are rounded only if they have
more than nine digits. Any number that has fewer than ten
digits will not be rounded. The computer does the best it can,
but it only has nine digits to work with.

If you type a PRINT statement with a long number like
12345678%¢
the Apple responds with

1. 2345478BE+¢9

25

The numbers 123456789¢ and 1.23456789E+J9 have the same value.
Really. The number PRINTed by your computer is in "scientific
notation". If you need numbers like this you probably know how
to read them. The Applesoft BASIC Programming Reference Manual
has more information if you are curious about this strange
notation.

Try some more numbers. How many digits can a number without a
decimal point have before the Apple changes it to scientific
notation? If scientific notation seems complicated, don’t
worry. You probably won’t be wanting to use numbers that
require it for some time yet. Remember that any number will be
PRINTed just the way you type it if the number is surrounded by
quotes. However, the Apple can’t use numbers in quotes for
arithmetic operations. For more information on scientific
notation and other types of number formatting used by the Apple,
refer to the Applesoft II BASIC Programming Reference Manual.

MORE ABOUT RETURN

So far, you have been pressing after every line, like a
zombie. We thought we might tell you why this key gets so
overworked. The reason is simple: without the , the
computer does not know when you have completed the instruction.
For example, you might start typing

PRINT 4 + 5

If the computer immediately jumped in and printed a 9, you might
be upset because you had planned to type

PRINT 4 + 5 + 346

which would have given a different answer entirely. Since the
computer can’t tell when you have finished typing an
instruction, you must tell the computer. You do this by
pressing the key. Since you always have to do this
after typing an instruction, we have (as you know) stopped
mentioning after every instruction. Pressing
after each instruction should be a habit by now, if you have
been doing all the examples.

We really hope you have been trying all the examples. Learning
to program is very much like learning to ride a bicycle, play
the piano, or throw a baseball. You can read all the books in
the world on the subject of bicycle riding, and be a great
"paper expert.”" But all this book-learning is of little help
when you actually get on a bicycle for the first time. Once you

26

have learned to ride, through experience (which can be a bit
painful), you can go almost anywhere. The same is true of
programming. You can read this manual and think you understand
it. But you won't be able to program. Only if you do each
example, as it is given, will you learn to program. That’s the
truth.

EASY EDITING FEATURES,
OR: WHAT TO DO BEFORE YOU HIT RETURN

No one is a perfect typist. We make mysteaks (Oops! See what I
mean?). The Apple has several features that aid in correcting
errors, thereby saving you the effort of retyping a whole line
for each goof. This is where the left-pointing and
right-pointing arrows on the keyboard come in.

The key is rather like the backspace key on a typewriter so
we witl call it the "backspace key". A few experiments will
make this clear. Type (exactly as shown) the statement:

PRINT COMPUTER"

and, as usual, press the key. The computer will reply
g

because 6f the missing quote. Now if we had typed

PRINT "COMPUTER" |

the computer would have responded with

COMPUTER

Don“t believe this manual. Try it. Now, without pressing
, type the "mistaken" instruction:

PRINT "COMFUTER"

27

Since you haven’t pressed EAID) , nothing has happened yet.
As shown in the photograph, the cursor is sitting to the right
of the last quote. (Sorry, we can’t make the photo blink)

rRlNT COMPUTER"

gRINT *COMPUTER"
HPUTER

JPRINT "COMFUTER"E

To change
COMFUTER
into

COMPUTER

we can use the . Notice that each time you press this key,
the blinking cursor moves back (to the left) one space.
"Backspace" is also a verb. So backspace the cursor to the F.
Type a P. As you see, the P replaces the F. Now press

« You got

comMP

from the computer? That is because you backspaced over "UTER".
Any character in the line you are currently typing that is
backspaced over is not sent to the computer when you press

. One solution would be to correct the F by backspacing
to it, and then to type

GO0808LEn
Try it.

It works! There is, however, an easier way. When you press the
key, the cursor moves to the right. As the cursor moves to
the right across a character, it has the same effect as if that
character had been retyped. We call the key the "retype"
key. Again type

PRINT "COMFUTER"

28

Sackspace to the F and change it to P. To complete the
tion simply press the retype key five times, and then
Galiy . Does it all work? The use of the backspace and
e xeys will save you a lot of time. Make a point of using
a2 number of times on your own 'mistakes,” so that these
become familiar.

PUTTING COLOR ON THE SCREEN

ut color graphics on the screen, we need a way to describe

=~ of the 16 available colors we want, and where we want it.
_- specify where a color goes, we divide the screen into 40
rtical columns, numbered @ through 39. The @ column is at the
ost edge of the screen, and the numbers increase to the

You may wonder why the numbers don’t go from 1l through
-} instead of @ through 39. As you get more programming
zxperience you will find that the choice we have made is
scmewhat handier, even though it may not seem that way at first.

.
i3
1))

The screen is also divided into 4@ horizontal rows, again
nunbered @ to 39. The horizontal rows start with row @ at the
top of the screen and increase to row 39 at the bottom. These
rows cut across the columns, partitioning each column into 4{
"bricks'" numbered @ (the top brick) through 39 (the bottom one).
Those who like formal terminology will recognize that this is
merely a system of rectangular Cartesian co-ordinates. Those
who don’t like fancy talk can just think in terms of columns of
bricks.

29

To use the screen colorfully, type the following instruction:

GR

You remembered the , no doubt. When you use this
command the screen wipes itself clean, leaving only four lines
for text at the bottom. The "GR" stands for GRaphics. To get
back to things as they were (before you typed GR) you use the
command

TEXT

When you type this command the screen will suddenly change to a
lot of "at" signs (@). This is normal. Try typing the TEXT
instruction, and then getting back to graphics by typing the GR
instruction.

Before you can place a dot of color on the screen, you must tell
the computer which color you want. There are sixteen colors
available. You have seen them before: they are numbered from @
to 15, as shown in COLOR DEMOSOFT 2.

Suppose you want to put a green dot somewhere. You must first
type the GR command, and then type

COLOR = 12

This means that any dot (or spot or brick) of color that you
place will be green. In fact, until otherwise instructed,
everything the computer puts on the screen will be green.
Except, of course, for the small area reserved at the bottom of
the screen for your instructions. To put a spot of color in the
upper left-hand corner of the screen (leftmost or zeroth column,
top or zeroth brick), you type

PLOT ¢. ¢

30

2 put a spot of the same color in the upper right-hand corner,
wou must specify column 39, brick @. So type

PLOT 39, ¢

Notice that you always give the column first. Now put an orange
brick at the lower left-hand corner. First change the color.
Remember--you should really be doing these exercises, not just
tninking about them. So, put out your fingers and type

COLOR = 2

Nothing happens on the upper, graphic portion, of the screen
(even if you did remember to press). But the computer
remembers that when you next PLOT something, it will be in
orange, not in green. Now that you have chosen the color, you
can put a dot in the lower left-hand corner. That’s column @,
and brick 39:

PLOT @, 3%

Did it work? Did you forget to press G@EILY ? Is orange your
favorite color?

Now put a magenta dot in the lower right-hand cormer. Figure it
out for yourself.

L]
JPLOT 39,33
pi}

PLOT ERROR MESSAGES

There are two error messages that can easily turn up when you
are using the PLOT statement. You already know that if you
typed

FLAT

or

PLOP

31

instead of

PLOT

you would get the message
*SYNTAX ERROR

A new error message occurs when you plot a number higher or
lower than those permitted for coordinates in a PLOT command.

Type

PLOT 13,85

and you get the message
TILLEGAL QUANTITY ERROR

This message means that you have tried to plot a point out of
range and off the screen. The highest numbers you can use in a
PLOT statement are 39 for the first coordinate, and 47 for the
second. Use of numbers over 39 for the second coordinate, as in
a statement such as

PLOT 2¢. 45

will just give you peculiar characters in the text area at the
bottom of the screen.

Trying to use negative values in a PLOT command is another way
to get the

?ILLEGAL QUANTITY ERROR

message.

DRAWING LINES

Suppose you want to draw a light blue horizontal line from
column 5 to column 9 at the level of brick 1l4. You could type

COLOR = 7
PLOT 5. 14
PLOT 6,14
PLOT 7,14
PLOT 8, 14
PLOT 9,14

32

Notice that the joints between adjacent bricks do not show, and

they form a continuous line. However, there is an easier way to
do horizontal lines. There had better be. Suppose you want to
draw a dark green horizontal line across the middle of the
screen. Using the long way, it would take forty typed
statements:

COLOR = 4
PLOT @, 2¢
PLOT 1.2¢
PLOT 2, 2¢

and so on, until
PLOT 39,20
The easier way is this. Just type

COLOR = 4
HLIN §,39 AT 2¢

Press the key, and there you have it: an instant
Horizontal LINe from column # to column 39 at the level of brick

20.

Now try to place a purple line from column 19 to column 28 at
the level of brick 18. Try a few others. Doing about 6
different horizontal lines should give you the hang of it.

Notice that when you put a colored dot or line at the same
location as an existing dot or line, the new color takes over,
and the old color disappears. To clear the screen of all
graphics at once, use the GR command.

There is a provision for automatic vertical lines similar to

that for horizontal lines. To draw an orange Vertical LINe in
column 7 from brick 12 to brick 33, we write:

33

COLOR = 9
VLIN 12,33 AT 7

Try this statement.

Practice making several more vertical lines by changing the
numbers for the rows and columns. You can test your proficiency
with both horizontal and vertical lines by drawing a magenta
border around the screen in five statements. Then put a green
cross on the screen. Try drawing some lines with COLOR = @.
Play with PLOT, HLIN and VLIN for a while. This manual’s
usefulness to you will self-destruct in five seconds if you
don’t experiment with these commands. Pfffsssss.

THE GAME CONTROLS

Grab the game control that you used in playing LITTLE BRICK OUT.
With the other hand type

PRINT PDL(@)
and a number should appear. Move the control a bit. Now type
PRINT PDL (@)

again. Experiment with moving the control and typing

PRINT PDL (2}

If the number never changes, you’ve got the wrong game control.
What are the highest and lowest numbers you can get? What is
the smallest change you can make?

You can discover the position of the other control by PRINTing
PDL(1). The abbreviation "PDL" comes from the word "PADDLE"
since these controls are often used to control "paddles" in
games. There are many other uses for these controls.

34

PDL is a function. A function, in Applesoft, is something

that takes one or more numbers and then performs some operation
on them to yield a single value. The numbers that the function
uses are called its arguments and are always put in

parentheses after the function name. PDL is a function that has
one argument. The number the function finds is said to be
returned to the program.

PIGEONHOLES
AND MORE CALCULATOR ABILITIES

On many simple calculators you can save a number for later
reference or use. To do this, you put the number into a special
place in the calculator--a place we shall call, for now, a
pigeonhole. Usually this is done by pressing a key marked "M"
for "Memory." On the Apple you can do the same thing. For
instance, to save the value 77, you type

M= 77

The value, 77, is not printed, just stored in the pigeonhole
called M. If you now type

PRINT ™

the computer will print the value of M. Try typing the two
statements.

Now type

and PRINT the value of M. It is 324, right? What happened to
the 77? It is gone forever. The pigeonhole can hold only one
value at a time. When you put a new value in M, the old value
is erased.

Type

PRINT "M"

What happens? There is a big difference between
]

and

s

35

It is just like the difference between these two statements in
English:

MICE HAVE FOUR FEET.
""MICE" HAS FOUR LETTERS.
In one case we are referring to little furry things with long

tails. In the other case we are referring to the word itself.
This is how quotes are used in computerese. When we say

PRINT “mM"
we mean to print the letter itself. When we say

PRINT M

we mean to print what the letter stands for. You would never
confuse the name of someone you love with the actual person that
name stands for.

You can store the result of a computation in a pigeonhole. For
example:

M=4+ 5

You can see that the answer has been stored by PRINTing the
value of M.

You can also use the value of M in further computation. For
example, try this on your Apple:

PRINT M + 2

Is the answer what you expected? Try some other calculations
using M.

A simple calculator has one pigeonhole. Computers have hundreds
of pigeonholes (Applesoft has 936). The formal term for
pigeonholes is variables. But this term is somewhat misleading
since pigeonholes don’t behave like 'variables" in mathematics.
They are much simpler. Each one is merely a place where one
value is stored. But we will defer to common usage. Just
forget the math you’ve learned. In the Apple all variables have
the value of zero until you put something into them.

A pigeonhole, or variable, can have almost any name that you
like, so long as it starts with a letter. For example:

36

EUM = D6 + 34 + 1323 + 8
GAMEPOINTS = 45
PLAYERZ = @

Some names are not allowed because they include a word that has
a special meaning to the Apple. These are known as reserved
words. One of these words is "COLOR". Thus a variable’s name
must not have the word "COLOR" in it. Try typing

THISCOLOR = &
or

COLORFUL = 9

All you get for your pains is an error message. Whenever a
variable name gives you the ?SYNTAX ERROR message, it means that
you have unwittingly included a reserved word in the name.

Don’t worry. Just choose another name.

A list of "reserved" words that cannot be used as variables or
as part of variable names can be found in Appendix B in the back

of this manual.

When you are choosing names, make them reflect the use to which
they are being put. This will make them easier to remember.

Try typing

BIRD = 11

and then

PRINT BIRD

Did you get what you expected? Now type
PRINT BITE

What happens? Try

PRINT BILL

and

PRINT BILLOW

37

If you study the names you will notice that they all begin with
"BI". Applesoft uses only the first two characters of each
variable name to distinguish it from other variable names. So
the name

BIRD

refers to the same variable as
BITE

and

BILLOW

and so on.

Here is a useful trick. Let’s say that you had some value in
the variable PRICE, and you wanted to increase this value by 5.
One way you could do this would be to PRINT the value of PRICE,
then add 5 to that value, and finally store the resulting value
back in PRICE. For instance:

PRICE = 2B
PRINT PRICE
PRINT 28 + 35
PRICE = 33

But see how much easier it is to type

PRICE
PRICE

28
PRICE = 5

]

Try the statements on the next page in order:

PRICE = 2

PRINT PRICE

PRICE = PRICE + 3

PRINT PRICE

PRICE = PRICE # 6

PRINT PRICE

PRICE = PRICE / 10
PRINT PRICE

At the end of this sequence of statements, you will probably

have the value 3. 1Is this correct? Is this what you expected?
Try this sequence:

38

APPLEE = 53

BANANAE = 11

QUDTIENT = APPLES / BANANAG
PRINT QUDTIENT

First think what answer you expect, then see if you are right.
If you are not, find out why. Lastly, try these statements:

HELLD = 128

PRINT "HELLO"
HELLO = HELLDO / 2
PRINT “HELLO™
HELLO = HELLO /
PRINT HELLO

fa

What did you expect? What did you get?

PRECEDENCE, OR WHO’S ON FIRST?

At certain old-fashioned banquets, the people were served their
food according to a strict plan: first the guest of honor, then
the female guests (in order of the rank of their husbands), then
the male guests (in order of rank), and finally the host. No
matter where they were seated, the waiter went among them
choosing the appropriate persons to be served next. We could
say there was a certain precedence among the diners. 1In a
simple calculation like

PRINT 4 + 8 / 2

you can’t tell whether the answer should be 6 or 8, until you
know in which order (or precedence) to carry out the arithmetic.
If you add the 4 to the 8, you get 12. If you then divide 12 by
2, you get 6. That’s one possible answer. However, if you add
4 to eight-divided-by-two, you have &4 plus 4, or 8. This is
another possible answer. Eight is the answer your Apple will
give. Here’s how the Apple chooses the order in which to do
arithmetic:

1. When the minus sign is used to indicate a negative number,
for example

-3+ 2
the Apple will first apply the minus sign to its appropriate
number or variable. Thus -3 + 2 evaluates to -l. If the Apple

did the addition first, -3 + 2 would evaluate to =5. But it
doesn’t. Another example is

39

BRIAN = &
PRINT —BRIAN + 1@

The answer is 4. (Notice, though, that in the expression 5-3
the minus sign is indicating subtraction, not a negative
number.)

2. After applying all minus signs, the Apple then does
exponentiations. The expression

4 +3 "2

is evaluated by squaring three (three times three is nine), and
then adding four, for a grand total of 13. When there are a
number of exponentiations, they are done from left to right, so
that

2~3"~2

is evaluated by nmultiplying 2 by itself three times (2%2%2)
which is eight, and then multiplying that by itself (8). The
answer is 64.

3. After all exponentiations have been calculated, all
multiplications and divisions are done, from left to right.
Arithmetic operators of equal precedence are always evaluated
from left to right. Multiplication (*) and division (/) have
equal precedence.

4. Lastly, all additions and subtractions are done, from left
to right. Addition (+) and subtraction (-) have equal
precedence.

Let’s summarize the Apple’s order of precedence for carrying out
mathematical operations:

First: - (minus signs used to indicate negative numbers)
Second: ~ (exponentiations, from left to right)

Third: * [/ (multiplications and divisions, from left to
right)

Fourth: + - (additions and subtractions, from left to right)

Below, you will find some arithmetic expressions to evaluate.
With each one, first do it in your head (or with the help of a
hand-held calculator, or pencil and paper), and then try it on
the Apple. If your own answer is different from the Apple’s
answer, try to find out why. We will give only the expressions
here. You will have to put a PRINT in front of each one to get
its value from the computer.

40

Unless you have a lot of experience with the way computers
evaluate expressions, you should actually do these examples.
Don’t do them all at once and then check with the computer. Do
an exanple by hand and then do it on the computer. Then go on
to the next one, and so on.

3+ 2

4 + 6 -2+ 1

g * 4

4 ~ 2 + 1

& /7 4+ 1

S -4/ 2

4 /7 2 -2

&% -2 + 6 /7 3+ 8
4 + -2

2™~2 3+ 1

2# 2 % 3+ 1
2% 2+ 1 %3
2%+ 2% 1 + 3
g/2/72/1

g %2/ 2+ 3% 2 ™2=%#1
26 / 2 # 5

No answers are given in this book. Your Apple will give you the
correct answerse.

HOW TO AVOID PRECEDENCE

Suppose you want to divide 12 by four-plus-two. If you write
i2 /7 4+ 2

you will get l2-divided-by-four, with two added on. But this is
not what you wanted. To accomplish what you wanted in the first
place, you can write

i2 /7 (4 + 2)

The parentheses modify the precedence. The rule the computer
follows is simple: do what is in pareantheses first. If there
are parentheses within parentheses, do the innermost parentheses
first. Here is an example:

i2 7 (3 + (1 +2) ™ 2)

41

In this case, doing the innermost parentheses, you first add 1 +
2. Now the expression is, effectively,

12 7/ (3 + 3 ~ 2)

But you know that 3 + 3 ~ 2 is 3 + 9 or 12 so the expression has
now been simplified to 12 / 12, which is one.

In a case like (9 + 4) * (1 + 2), where there is more than one
set of parentheses, but they are not "nested" one inside the
other, you just work from left to right. This expression
becomes 13 * 3, or 39.

Here are some more expressions to evaluate. Again, if you are
not familiar with computers, the few minutes you spend actually
working these out and trying them on the Apple will be very
valuable. You will be well repaid for your efforts by being
able to use the computer more effectively. Incidentally, most
of these rules for precedence and parentheses hold good for most
computer systems anywhere in the world, not just the Apple.

44 /7 (2 + 2}
(44 /7 23 + 2
3+ (-2 % 2)
(3 + -2) = 2
106G 7 (208 / (1 % (2 - 5)))
32 /7 (1L + (7 / 3y + (5 / 4})

42

44
48
5¢
50
52
53
54
55
59
59
60
61
62
64
67
67
68
68

Deferred execution: NEW, LIST, RUN and HOME

Elementary editing: DEL

Elementary aerobatics: GOTO loops

Some more things that make life easier: more editing tips
The moving cursor: editing with the ESC key

A word about learning Applesoft BASIC

An accident about to happen

The truth: arithmetic and logical assertions

Order or precedence for operations

The IF statement

Saving programs on diskette: SAVE, CATALOG, RUN and LOAD
Saving programs with a cassette recorder: SAVE

More graphics programs: REM

FOR/NEXT loops

A wrong program

A last example of nested loops

Getting flashy: INVERSE, FLASH and NORMAL

PRINTs charming: comma, semi~colon, TAB, HTAB and VTAB

43

DEFERRED EXECUTION

No, this section is not on last minute reprieves for condemned
criminals. Up to now, when you typed

PRINT 3 + 4

and pressed the key, the computer would do what you
told it to do, immediately. When a computer performs according

to the statement you have given it, it is said to execute that
statement. Thus, you have been using the computer to do

immediate execution of each statement you have typed on the
Apple’s keyboard.

You are about to learn how to store statements for execution at
a later time (deferred execution). To make sure that the
computer’s memory is cleared of any previous programs, type

NEW

Like almost everything else you have seen, NEW has to be
followed by a . To tell the computer to store a
statement, just type a number before typing the statement. For
exanmple, if you type

igg PRINT 2 + 4

nothing seems to happen, even if you press . The Apple
has stored the statement. To see that it has stored the
statement, you type the instruction

BT

Try it. Unless you mistyped something (and probably got a
TEYNTAX ERROR

for your effort),

1gg¢ PRINT 2 + 4

appears on the screen. Now type the statement

RUN

and the answer

7

appears on the screen.

44

Typing RUN caused your stored statement to be executed, but the
computer has not forgotten the statement. You can RUN the same
statement as many times as you like. Try it.

What’s more, the computer does not forget the stored statement

when you clear the screen. Here’s a new way to clear the
screen:

HOME

The HOME command has the same effect as

@

that you learned earlier, but it can be used in deferred
execution as well as immediate execution. To try this out type

13@ HOME
Now when you type
RUM

the computer faithfully executes the stored statement and clears
the screen. Type

NEW

and then

T
Fa

sl

T

1
e

and see what happens. Typing NEW has caused the stored
statement to be lost permanently. Type

RUN

and nothing appears on your screen. That is because your old
statement has been erased by the NEW command.

It is possible to store many statements by giving each of them a
different number. Try typing this:

PRINT “HELLOY
FRINT 4 ™ 3
PRINT &7 /

3 I

45

Nothing much has happened so far. But now type
RUN

and watch the answers appear.

IRUN
J1 PRINT “HELLO"
J2 PRINT 4 ~ S

I3 PRINT 67 7 12

UN
%%u
333334
=

The numbers that we put in front of statements, in order to tell
the computer to store them, are called line numbers. The
computer stores and executes statements in order of increasing
line number. To see this in action, erase the statements you
stored by typing

NEW

and then type these statements:

1 PRINT “P*
Z PRINT “at
3 PRINT “E®
2 PRINT "L*®

Notice that zero is an allowed line number. The highest line
number that you can use is 63999. Now RUN these instructions.
The results should look like this:

LET G e

To see what has happened inside the Apple, type

LIST

Notice that you do not have to LIST a set of instructions before
you RUN them. It is, however, a good idea to do so.

46

A set of instructions that is executed when you type RUN is
called a program.

The program was meant to print

mrMrTwTor>

but, it seems, a PRINT statement was left out. How can you add
it in? Only by retyping the statements with line numbers 2 and
3 as statements 3 and 4, and adding a new line number 2. To
make the corrections type this:

2 PRINT "P*
2 PRINT "L
4 PRINT “E"

To see what has happened, LIST the program.

Notice that in whatever order statements are entered, the Apple
stores them with their line numbers in numerically ascending
order. Now RUN this program.

It was a bother to have to retype those statements in order to
merely add one in the middle. It is, therefore, good
programming practice to leave some line number room between
lines, and before the first line. Type

NEW
to eliminate that program and put in this one:

i8¢ PRINT vC*
11¢ PRINT “T

When you RUN this program it doesn’t quite print the word "CAT"
vertically. But now you can go back and type

193 PRINT

LIST and RUN this program. From now on this book will start all

programs at a reasonably high line number and leave plenty of
room between successive line numbers so there will be adequate
room for inserting statements.

47

ELEMENTARY EDITING

Earlier, you discovered that the instruction
PRINT PDL(Z)

would print a number corresponding to the present position of
one of the game controls. It took quite a number of PRINTs to
discover very much about the control. Now that you can write
programs, life is much easier. Clear the computer with a

NEW
and type
1g% PRINT PDL(Z)

Now, each time you type RUN, this short program is executed and
you can see the position of the game control.

For doing something more than once, the stored program is
already saving you some work. Before, you had to retype a whole
statement or group of statements. Now, you merely retype

RUN

Deferred execution confers another advantage. You can modify
part of a program and leave the rest the same, without having to
retype the whole thing. For example:

NEW
22 P = PDL (#)

21 PRINT P

22¢ PRINT “MOVE THE GAME CONTROL"
Z3¢ PRINT “TO A NEW POSITION®

RUN this program a few times, changing the game control’s
setting between RUNs. Check to see if the program responds to
both game controls. It should work for only one of them. You
might take this opportunity to mark this control with the number
Zero.

This same program can be used, with a slight change, to look at
the other game control. List the program the way it is now,

then type

2% P = PDL{1}

48

When you type a statement with the same line number as one that
already exists in a program, the new line replaces the old one.
LIST the program to see how it has changed. RUN it a few times
to see what happens. Move the other game control between RUNs.
Does this program respond to both controls? 1lMark a number omne
on the control to which this program responds.

Modifying a program in this way is one example of editing a
program. Another way is to use what you have just learned to
delete lines you no longer want in your program. If you wanted
to erase line 230 in the preceding program you would type

ﬁ

and then press m

You could also have used the DELete instruction. To DELete line
23Q from your program you would type

The advantages of the DELete are not apparent until we reveal to
you that whole sections of programs can be erased with
instructions like

DEL 22F, 222

which DELetes every statement whose line number is 20§ or
greater, but less than or equal to 23@¢. Try these commands, and
LIST the program to see what they do to it. The ability to
DELete blocks of line-numbered statements will be handy when you

are writing large programs.

As you have seen, there are several commands that help you deal
with whole programs. They are

NEW
which erases programs,

L.

]

87

which displays programs, and

RUN

which executes programs, beginning with the statement having the
lowest line number. It is also possible to start execution

elsewhere, and to LIST only part of a program. These
capabilities will be covered later.

49

ELEMENTARY AEROBATICS

At this point you are beginning to fly, so this section will
discuss loops.

The best way to see how the PDL function works--and to
understand program "loops''--is to use a statement we haven’t
discussed, until now. It’s very simple. Type the following
lines (after typing NEW, to erase any old programs that might be
around):

11 PRINT PDL{(g@}
i2¢ GOTO iig

Line 11¢ of this program PRINTs the number representing the
current value of the game control. Line 120 does just what it
seems to say: it causes program execution to go to line 114.
What happens then? The program PRINTs the current value of the
game control. Then it executes line 120, which says to do line
114 over again, and so on. Forever. This is a loop. A loop
is a program structure that exists when the program includes a
command to return to a statement executed previously. RUN the
program. Play with the game control. In the next section, we
will tell you how to stop this program. Meanwhile, admire the
fact that--if you typed RUN when instructed to do so, three
sentences back--your Apple has executed the statement PRINT
PDL(@#) a few hundred times already. Now the power of a stored
program begins to increase significantly over what you can do by
hand. Your abilities with the computer will increase
dramatically in the next few sections, now that a good
groundwork has been established.

SOME MORE THINGS THAT MAKE LIFE EASIER

But first, you are probably wondering how to stop the paddle
program. You have already noticed how the numbers ripple up the
screen as you move the paddle. This is because the numbers are
printed at the bottom of the screen and as each new number is
printed, all the rest of them are moved up one line. This is
called "scrolling" and you’ve been seeing it all along, but at a
much slower rate. To stop running the program, simply use

The command lets you know where the program executioa
was stopped by printing

50

BREAK IN 1ig

or whatever line number the program was stopped at. (Try it).
By the way, this is an exception to the rule about pressing
after every command. Pressing is usually not
necessary when a program is stopped with . You can
also use the key to stop programs if you like, but, with
you will not get the message that tells you the line
number at which the program was stopped.

When you stop a program with or , you can
resume its execution by typing the instruction

CONT

which stands for '"CONTinue."

Try it, and then try this program:
MNEW

ig@ X = PDL(Z:

1ig PRINT “GaAaME CONTROL ZERO IS®

122 PRINT X

12¢ ¥ = PDL(1}

14 PRINT "akD CONTROL ONE IS"

13 PRINT Y

Earlier we said that when you type RUN, the program starts
executing at the lowest numbered line. True. However, if you

want to start RUNning at some other line, such as line 13¢, you
simply type
RUN 132

You can specify line numbers in the LIST statement, as well. If
you type

LIST 138

the Apple will LIST line 130 (if there is one, of course). If
you type

LIST 118, 132

the Apple will LIST all the lines of your program starting at
line 11¢ and continuing through line 13@. This feature is not
available with the RUN instruction.

51

THE MOVING CURSOR
HAVING WRIT

CAN ERASE OR COPY
ANY OF IT

When the backspace and retype keys are pressed, they move the
cursor. But they also either erase or retype characters, as you
learned in Chapter 2. It is possible to move the cursor without
affecting anything at all (except the cursor position). You do
this by using pure cursor moves.

Five keys are used in executing pure cursor moves. They are:

s O 5 , and) - Here’s how to use them.

on boa sihofr G

First you put the Apple in edit mode by pressing and releasing
the key, then use n to move the cursor up, to move
it left, c to move it right, and ([to move it down. To move
the cursor repeatedly, hold down one of the cursor direction
keys (B » 5 , or [@) and then hold down the key
at the same time. The cursor will zip along while both keys are
held down. If the cursor reaches the top of the screen, it will
stop. If the cursor reaches the bottom of the screen, it will
stop, and the screen display will move upwards, one line at a
time. If it reaches the right edge of the screen, the cursor
will disappear and "wrap around" to the beginning of the next
line. Practice moving the cursor around the screen with these
five keys.

When you get tired of pure cursor moves just press the space
bar, and you will find yourself in normal typing mode.

The pure cursor moves caused by the and (@ keys, when seen
on the screen, appear the same as the moves caused by the
backspace and retype keys, but the effect is different as you
will see when you LIST the results. The pure cursor moves don’t
cause any changes in the text they go over, whereas the
backspace and retype keys erase and retype the characters they
go over.

52

These pure cursor moves do have an application, so they are not
so pure after all. For example, type:

13¢ PRUNT
14 PRINT

STHE QUALITY OF MERCY™
14 1

“I5 NDOT STRAINMEDY

pressing after each line. Your Apple seems to accept
the statements, but when you try to RUN the program, you get the
message

*SYNTAX ERROR IN 122
for your pains.

To make the needed correction you can use this trick to
effectively retype the entire statement. First LIST the progzram
and then press . Now type @ enough times to move the
cursor up to the line with the incorrect statement. Press the
@ key to move the cursor to the beginning of the line, and
then use the retype key to retype all the characters preceeding
the "U"™ in "PRUNTI". Type an "I" over the "U", and continue with
the retype key to the end of the line. Then press G and
LIST the program to see that the line is properly corrected.

The computer does have mercy on poor typists.

When you must retype a portion of a line that appears somewhere
on the screen, the pure cursor moves and the backspace and
retype keys can be used to speed the retyping. A few minutes of
playing with this feature now will save you much work later.

©

The backspace key only works on the line you are currently
typing. If you type a program line and then execute a pure
cursor move before you press (AL , the program line you just
typed, not the characters the backspace key is going over, will
be affected by the backspace key moves. The retype key,
however, does retype the characters it actually goes over.

A WORD ABOUT LEARNING
APPLESOFT BASIC

Many times there are questions you can ask about the Applesoft

BASIC language that are not answered directly in this book. For
instance, in the statement

53

PRINT "HELLOY

do you have to put a space after the word "PRINT"? Rather than
give you the answer, we recommend that you simply turn to your
Apple and try it both ways. Usually a simple experiment will
answer your question and, since you have taken the time to try
it yourself, you will remember it far better than if you had
merely read it.

AN ACCIDENT ABOUT TO HAPPEN

Earlier in this chapter you learned to delete a line by typing
its line number and pressing the . This is a favorite
way of introducing errors into your program. Suppose you wanted
to eliminate line 11¢¢ from your program, but you slipped and
typed

11¢

(2 . Congratulations, you have just wiped out line 11§.
This happens. Or you are about to fix up line 45¢ so you type

asg
and think about it and decide not to change the line after all.

Don’t press . Either backspace over the line number, or
use the special "forget this line'" command,

Using 3 places a backslash at the end of the line you
are typing, and it will be as if you never typed it at all.

THELLO®
1345 + 765"
=67/ 4t

“THIS WILL NOT BE USED"\

“HELLO®
=345 + 765"
67 s 4t

54

THE TRUTH

The Apple can distinguish between what is true and what is
false. Since this is more than most of us can do, a few words
of explanation are in order. The symbol > means ''greater than".
The assertion 6 > 2 (which is read "six is greater than two')

is certainly true. The Apple uses the number 1 to indicate
truth.

If you type
PRINT & » 2

the computer will reply with a one. The assertion 55 > 78 is
false. The Apple uses the number @ to indicate falsehood. If
you type

PRINT 35 » 78
the computer will reply with a zero.

The symbol < means "less than'", and you can make statements
using it as well. Here is the full set of symbols used in
making assertions:

> greater than

< less than

= equal to

>= greater than or equal to
<= less than or equal to

<> not equal to

To type the symbols for 'greater than or equal to'" and "less
than or equal to" on your Apple keyboard, you must first type
either a < or a > and then type an =. To type the symbol for
"not equal teo" you must type a < and then a >.

Think about and then test to see which of these assertions are
true, and which are false.

oo 00000

55

Assertions can include variables and expressions as well as
numbers. For example

PRINT (43 # &) < (45 + &)

will print the value 1 since 27% is not equal to 51 (remember
that 1 means the assertion is true).

You have seen that the Apple can tell truth from falsehood in
simple assertions about numbers. However, an assertions such as
ABLE > BAKER may be true or false, depending on the value of the
two variables, ABLE and BAKER. If

ABLE = 5

and

BAKER = 9

then the assertion
ABLE > BAKER

is false. But if
ABLE = -8

and BAKER = -15
then the assertion
ABLE > BAKER

is true.

Assertions have the numerical values of zero or one. They can
be used in arithmetic expressions instead of ones and zeros.
For example,

PRINT 2 + (4 > 2)

will print the value 4. The statement

T =4 <& 2

gives T the value 1, since 4 does not equal three, and thus the
assertion 4 <> 3 has the value l. The statement

HOT = &7 = 19
looks very confusing at first, but it is easily understood.
Since 67 does not equal 19, the assertion 67 = 19 is false and

has the value zero. The value of § is given to the variable
"HOT . n

56

43 we have seen, the Apple uses 1 to mean true, and @ to mean

e. If something is not true, it is false. If something is

false, it is true. This may not always be the case in real

lifZe, but it is always the case with computers. Try this on the

3

~d then try

NOT &

The computer agrees: not true is false and not false is true.
O0f course, you can use expressions instead of ones and zeros.
For example

St

FRINT NOT (43 » 33

The sentence

TRIANGLES HAVE THREE SIDES.

is true. And the sentence

THIS BOOK IS IN ENGLISH.

is true. Consider the sentence

TRIANGLES HAVE THREE SIDES AND THIS BOOK IS IN ENGLISH.

Is this sentence true or false? It is true. Consider the
sentence

TRIANGLES HAVE EIGHT SIDES AND THIS BOOK IS IN ENGLISH.

This sentence, as a whole, is false. Lastly, consider the
sentence

TRIANGLES HAVE EIGHT SIDES AND THIS BOOK IS IN SWAHILI.

This sentence is also false. 1In general, when you combine two
sentences, or assertions, by joining them with the word AND, you
find that

a. The new sentence is true if both original sentences were
true.

b. The new sentence is false if at least one of the original
sentences was false.

The Apple knows how to determine whether an assertion containing
the connecting word AND is true or false. Test your computer
with the following instructions; try to predict each answer:

PRINT 1 AND 1

PRINT 1 &ND £

PRINT # AND 1

PRINT £ AND 2

PRINT (3 > 2y &ND &
PRINT (NOT #) AND (4 = 5}

57

Is this sentence true or false?

A TRIANGLE HAS THREE SIDES OR THIS BOOK IS IN LATIN.

It’s true. A triangle does have three sides, even if this book
isn’t in Latin, so the sentence as a whole is true. Quod erat
demonstrandum. In general, when you combine two sentences by
joining them with the word OR, you find that

a. The new sentence is true if one or both of the original

sentences were true.
b. The new sentence is false if both of the original sentences
were false.

The Apple can also determine if an assertion containing OR is
true or false. Try each of these on your Apple--after figuring
out what the answer should be.

PRINT 1 OR 1
PRINT {1 OR &
PRINT @ OR 1%

@

PRINT @& OR
PRINT (4 <> 3 OR (4 = 3)

PRINT 1 DR (@ A&ND 1)

PRINT ({2 > 43 OR (54 < 237)) ANMD (NOT @)

AND, OR, and NOT will become very useful in the next section.

You have already found that in the statement

FRINT { OR £

the computer regards 1 as true and @ as false. Now try this:
PRINT 23 OR &

and this:

PRINT —-247 AND 227¢87. 61

In assertions, the Apple regards not only 1, but any number
which is not zero, as true. However, when the computer figures
out the value of an assertion, that value will always be either
@ or 1.

While the following box gives the precedence rules for AND, OR,

and NOT, we strongly recommend that you use parentheses to make
your statements clear.

58

ORDER OR PRECEDENCE
FOR OPERATIONS USED
SO FAR IN THIS TEXT:

I. ()

2. NOT - (for negative values)
e =

4e % /

5 + -

6. > < = >= <= <>
7. AND

8. OR

THE IF STATEMENT

Suppose you want to print out integers from 1 through 1¢, one
number to a line. An obvious way to do this is

MNE
1

W

Z PRINT 1
2¢ PRINT 2
23¢ PRINT 2

and so on. But this would require 1§ statements, and if you
wanted to print the integers from 1 through 20¢ this way, it
would require 20¢ statements. Using what you have already
learned, you can PRINT integers from 1 on up in just four
statements by using a loop:

287 Moo= 1

21 PRINT N
220 N o= Mo+ 1
23¢g 6070 212

There is a way to control how long a loop runs. What you want
is a statement that does a GOTO if N is, for example, less than
11, but doesn’t do the GOTO if N is greater than 1l. The answer
to your wishes is the IF statement. If a condition is met, the
computer will skip the GOTO instruction and execute the
instruction on the next line. If there is no next line, the
program will end.

Here is a program that counts from 1 to 1 and then stops:

B¢ N o= 1

21% PRINT N

228 N o= M o+ 1

23 IF M < 1@ THEN GOTO 218

59

In general, the IF statement works like this:

IF arithmetic expression THEN any statement

First, the arithmetic expression is evaluated. If it evaluates
to zero (false) all the rest of that program line is ignored,
and the computer goes on to the next line. If the arithmetic
expression is not zero (true) the remaining portion of that
program line is executed.

The IF statement is a very powerful one, and it will appear in
almost every program you write. For the fun of it, try this
program:

NEW

40¢ GR

41@ ROW = 1

42¢ COLDR= ROW

43¢ HLINMN @, 329 AT ROW

44% ROW = ROW + 1

45¢ IF ROW < 1& THEN GOTO 42¢

SAVING PROGRAMS ON DISKETTE

(Skip this section if you are not using a disk drive.)

At this point, you may wish to save on diskette some of the
programs you have been using. Simply type in the program (after
typing NEW) and then type

SAVE

followed by the name you want to use when refering to the
program, and then, of course, a . For instance, if you
wanted to SAVE the program above and call it STRIPES, you would

type
SAVE STRIPES

and the program would be saved on the diskette under the name
STRIPES. Once the program is SAVEd, type

CATALOG

followed by RETURN to see the name of your program listed with
the other programs on the diskette. You would then be able to
RUN the program called STRIPES from that diskette anytime you
wished by typing

60

[y
fi

Rty STRIPE

L

Try SAVEing the program of your choice. If you accidentally
nistype the command (and probably get ?SYNTAX ERROR from the
Apple) simply retype the line correctly.

Sometimes it is desirable to load a program into the Apple’s
memory without actually RUNning the program. For example, you
may wish to modify the program before you RUN it. The LOAD
command is useful in this instance. To use it, simply type
LOAD

followed by the name of the program you wish to LOAD. For

instance if you wanted to LOAD the program called STRIPES, you
would type

LOAD ETRIPEE

If you change the program and then wish to RUN the new version
which is in the Apple’s memory but not SAVEd on the diskette,
remember to type only

i

If you forget and type

{

RUN STRIPES

T

{

the old version stored on the diskette will be re-LOADed,
erasing the new version in memory.

You can use the LOAD and SAVE commands to move programs from one
diskette to another by LOADing a program from one diskette and
SAVEing the program to another diskette. Practice using the
LOAD and SAVE commands.

SAVING PROGRAMS WITH A
CASSETTE RECORDER

(Skip this section if you are not using a cassette recorder.)

To SAVE on cassette tape a program you wish to use later, first
insert a blank cassette into your recorder and rewind the tape
to the beginning, where your recorded program will be easy to
find. On the recorder, hold down the PLAY lever while pressing
down the RECORD lever. Both should stay down. Back at the

Apple, type

61

SAVE

When you press AL , the blinking cursor will disappear.
After 1¢ or 15 seconds, the computer will give a "beep" to let
you know the recording has begun. Another "beep" will sound
when the recording is completed, and the cursor will reappear.
Push the STOP lever on the recorder, rewind thz tape to the
beginning, and you are ready to go back to programming. Your
program in the computer has not been affected in any way by
SAVEing it.

MORE GRAPHICS PROGRAMS

Earlier, you put four colors at the corners of the screen. Now
type this program:

T U S0

il

LIST the program to check that you typed it in correctly, and
then RUN it. Quick, isn’t it? To change the colors, just
change line 20}, and RUN the program again. Try to LIST the
program. Notice that the listing slips through the narrow
window at the bottom of the screen. This will continue to
happen unless you type

S

TEXRT

to get out of GRaphics mode before you try to LIST.

The following program makes the entire screen a solid color.

y
KZ"
z

/]

VLIN 2, 3% AT COLUMN
L COLUMN DLUMN + 1
25¢ IF COLUMN < 4@ THEN GDTO 23¢

Here’s a blow-by-blow explanation of what happens when you RUN
this program. Line 2@ sets GRaphics mode. The color is chosen

62

in line 21(¢. The program is to start in the screen’s column @
and work its way over to column 39. Line 220 makes sure the
progranm starts in column @. At line 230, a vertical line is
drawn in column . Now that column @ is filled with the desired
color, line 240 increments the column by one. The value of
COLUMN is now 1. Line 25@ checks to see if the new value of
COLUMN is less than 4@. If it is less than 40, the program goes
back to line 23¢ to draw a new vertical line in. that column.
However, when the value of COLUMN reaches 4@ (on the Apple
screen, the rightmost column is column 39, the program does not
go back to line 23@, but "drops through'" (as we say) and stops
executing because it has reached the end of the program.

To eliminate the need to type RUN each time you wish to fill the
screen with color, type

2&¢ GOTO 21i¢

Observe what happens. When will this program stop? LIST the
program and make sure you understand what it does before going
further in this book.

When you are finished playing with the solid color program,
clear the computer and try the following program. It uses a new
and very important instruction: the REM statement. 'REM" stands
for "REMark'". This statement allows you to put commentary in a
program. The computer ignores any REM statements; they are
strictly for the benefit of humans. See how easy it is to
follow this program where REMs are used liberally.

2¢¢ REM SET (GRAPHICS MODE

21g GR

22¢ REM CHDOSE & COLDR

23¢ COLDR= 1

24¢ REM READ FADDLE ZERD

25¢ ¥ = PDL{gZ)}

2&¢ REM DIVIDE BY 7 S0 MAXIMUM VALUE OF X IS 34

27¢ X =¥ /7
REM READ PADDLE ONE
Y = PDL{1}
REM LIMIT RANGE TO KEEP Y ON THE SCREEN TOO
Y =Y /7 7
REM FLOT THE POINT
PLOT XY

GOTD 252

After you type RUN, operate the game controls. This program is
called the "Etch-a-sketch" (TM) after a device that behaves

63

similarly. The division by seven is necessary since the PDL
function gives values between $ and 255, whereas the screen can
only accept column and row values from @ to 39. Dividing by
seven gives you values from (¢ / 7) = @ to (255 / 7) =
36.4285715. Then GRaphics mode automatically rounds coordinate
values down to the nearest integer whose value is less than or
equal to the given value. In other words, the X and Y
coordinates are rounded down to integers from @ to 36 so that
the X and Y coordinates can be PLOTted. This method does not
utilize the full height or width of the screen. To get the full
width of the screen, instead of

Z27¢ X = X /7
you could use the two lines

F 23% THENM X = 239

27¢ IF X
£/ &

2735 X

M

To get the full height of the screen, you could do the same
thing using the Y coordinate.

The IF statement limits the value of X to 239. In the Apple’s
low-resolution GRaphics mode, 239 / 6 is rounded down from
39.833333 to 39. This use of the IF statement to limit the
range of a variable is very common.

FOR/NEXT LOOPS

Loops, whether executed by airplanes or computer programs, have
a top and a bottom. In the program

NEW

199 NUMBER = @

11¢ PRINT HUMBER

12¢ NUMBER = NUMBER + 1

13¢ IF MNUMBER <= 12 THEN GOTD 1i¢

line 11¢ is the top of the loop, and 13¢ is the bottom. The
progran prints the integers from @ to 12 inclusive. The number
12 is the limit of the loop. Another way to write a loop is

to use a statement we have not discussed yet: the FOR statement.
We can use this statement to rewrite the previous program.

2¢¢ FOR NUMBER = ¢ TO 12

21 PRINT HNUMBER
22 MEXT MNUMBER

64

Use
RUN 282

to execute this program. If you just type RUN, the program at
line 1@@ (the lowest line number around) will be executed.

Line 2¢¢ contains the new FOR statement. It starts by setting
NUMBER to the value #. This is exactly the same task that line
1#¢ performed. Then line 21¢ is executed. The bottom of the
FOR loop is in line 22@. The variable NUMBER is increased by 1
and then compared to the upper limit specified in the FOR
statement: 12. If NUMBER is not over the limit, execution
continues at the statement immediately following the FOR. If
the variable is over the limit, the program drops through (out
of the loop) to the statement after the NEXT. In this case, the
program drops through and, not finding any more lines,
terminates the program.

The most obvious advantage of the FOR/NEXT method of
constructing loops is that it saves a statement. The most
important advantage is that you don’t have to think so hard when
writing a loop if you use a FOR/NEXT loop. If you wanted to
draw a series of horizontal lines on the screen, using each of
the 15 colors on the screen, you could type

3peC GR

Another advantage is that it is much easier to read a single FOR
statement than to look through three statements to figure out
what a loop is doing. To find the bottom of a FOR/NEXT loop,
all you have to do is look for a NEXT which has the same
variable as the FOR.

It might be well to mention that, although you should know how
the FOR statement works, you don’t have to use it. It doesn’t
add any new abilities to those you already have. Tt just makes
some programs easier to write (for some people).

At this point, if you have been following along on your Apple
11, you should remove the portion of the programs between lines
30@@ and 3¢40, inclusive. So type

DEL 3233, 3047

65

and then LIST the program to check the results.

To PRINT just the even numbers from @ to 12, you could use the
program

199 THING = 2

11 PRINT THING

12¢ THING = THING + 2

13¢ IF THING <= 12 THEN GOTO 1ig

The secret is in line 12@, where 2 is added to THING. We say
that the loop steps by two. To step by two in a FOR loop, you
would type

20¢ FOR THING = g TO 12 STEP 2

The rest of the program would look like lines 21¢ through 22¢ on
the previous page except that the name NUMBER would have to be
changed, wherever it occurs, to the name THING. Try it. The
STEP may be any number in the range of the Apple. It can even
STEP backward, for example

20¢ FOR THING = 3% T0 15 SBTEP -3
Type this line and try it by typing
RUN 200

You should play with the FOR statement for a while, if you wish
to learn to use it. A number of the example programs from this
point on will use the FOR statement.

Along with the convenience of the FOR statement come some
limitations. For example, FOR/NEXT loops may be nested, but may
not cross. Here are a few examples which demonstrate the idea.

NEW

3¢% GR
3ig FOR HUE = 1 TO 15
22¢ COLDOR= HUE

33¢ FOR ROW = ¢ TO 35—
34¢ HLIN 2,39 AT ROW

2S¢ MNEXT ROW

24Q COLOR= HUE - 1

27¢ FOR COLUMN = @ TD 3 Gem——
38¢ WLIN §.39 AT COLUMM
29¢ MEXT COLUMN
4% NEXT HUE

66

This program is an example of two-level nesting. Think about it
and RUN this program before going on to the next. Remember,
when writing programs using FOR statements, each FOR must have
a matching NEXT.

A WRONG PROGRAM

NEW

3g¢@ FOR N i 710 2@-———1
S1g PRINT N

52 FOR J = 3¢ TO 4@——
33 PRINT J

S4¢ NEXT N
55 NEXT J

This program won’t work. Its loops are crossed, which not only
gives an error message, but doesn’t make any sense. Whenever
you find yourself writing crossed loops, your thinking has
gotten tangled. If you are sure you know what you are doing,
and still want to cross loops, use loops made with IF
statements. You can cross those all you want, for what good it
will do you.

A LAST EXAMPLE OF NESTED LOOPS:

NEW

2g3 GR

2P HUE = ¢

22¢ FOR COLUMN = ¢ TO 35 STEP §
33¢ FOR LINE = @ TO 3¢ STEP 1¢
248 HUE = HUE + 1

35¢ IF HUE > 15 THEN HUE = @
34¢% COLDR= HUE

27¢ FOR ROW = LINE TO LINE + §——
32¢ HLIN COLUMN, COLUMN + 4 AT ROW
29¢ NEXT ROW

ag¢ NEXT LINE

41¢ NEXT COLUMN

This program has three-level nesting and draws quilts. Note
that COLOR can’t be used as a FOR/NEXT variable. COLOR is a
reserved word in Applesoft. Try running the program in text
mode by removing line 3¢¢). What happens?

67

GETTING FLASHY

If you're bored with plain old white print on a black
background, you will especially enjoy this section. Type

INVERSE

and take a look at the Applesoft prompt and cursor. The prompt
character should be black on a white background. Now type a
simple program such as

NEW
19¢ PRINT "BLACK AND WHITE IN COLOR™

and RUN it. Isn’t that more exciting? Now type

FLASH

and RUN the program again. Now that is flashy.

Notice that INVERSE and FLASH affect only the computer’s

output. Characters which appear on the screen as you type them
are not changed. These commands can be used in both immediate
and deferred execution. Experiment with them. After using the
INVERSE and FLASH commmands for a while you may decide that
white on black is not so boring after all. If you do decide you
prefer white on black, type

NORMAL

to return to normal text mode.

PRINTS CHARMING

As an experiment, type this program and see what it does when
you RUN it.

NEW
1g¢ PRINT “HELLOD"
11¢ GODTD 188

Stop the program with . Then change line 1¢@ by just
one symbol

19¢ PRINT “HELLO",

68

and RUN the program again. As you can see, this PRINTs the word
in columns. Now substitute a semicolon (;) for the comma (,)

13¢ PRINT "HELLOY:

and RUN the program again. This time the output is packed.
This means that there are no spaces between what you told the
computer to PRINT. It prints HELLO after HELLO, until the
screen is quickly filled.

Change the program by adding this statement
3V = 9

and changing line 10 to read

i2% PRINT V

RUN this program. Now change line 100 to
122 PRINT

and RUN it again. Then change line 160 to
12¢ PRINT

and observe that the comma and semicolon can also be used with
numerical values. The ability to place numbers one after the
other without intervening spaces is sometimes quite useful.
Commas and semicolons can be used within a PRINT statement.
Clear the old program with NEW, and type

128 STRIKES = 2
11g BaLLE = 2

12¢ PRINT STRIKES, BALLS

You can make clearer output by including messages in the PRINT
statement. For example, change line 120 into

12¢ PRINT "THE STRIKES AND BALLE ARE “; STRIKES, BALLS

Notice that you probably want to have a space after the word ARE
lest the number of strikes gets printed too close to it. If you
don’t think that the large space between the number of strikes
and balls looks nice, you could use the statement

12¢ PRINT "THE STRIKES AND BALLE ARE "“; STRIKES: "
U BaALLS

69

In this version, a blank is put between the numbers of strikes
and balls. Perhaps the prettiest way of doing this (are you
trying all of these on your Apple?) is

12¢ PRINT “STRIKES "iSTRIKES: ™ BalLLs Ui BalLLE
This gives you a scoreboard-like display.

Let’s say that you wanted to PRINT the word HERE starting in the
1@th column (the screen is 4@ columns across, by the way), you
could use this statement

12¢ PRINT * HERE"

(You have to take our word for it that there are nine blanks
before the word HERE). Or you could use the TAB feature. Just
as on typewriters, you can set a tab on the Apple. The
statement

12¢ PRINT TaAB{1if}“"HERE"®

has the same effect as putting 9 blanks in the quotes, as we did
above. Try it, you’ll like it.

By combining the TAB with the FOR loop you can program some nice
visual effects. For example:

NEW

gz FOR N =1 TDO 24
21¢ PRINT TAB(NIYXM
Z2¢ NEXT M

There are 24 (not 4¢) horizontal printing lines. That, by the
way, is why the upper limit in the loop in the program above is
24. TAB cannot be used to move backwards (to the left) on a
line. Only forward moves are carried out. To print on a
particular line, you can vertical tab (VTAB) to that line. The
top line is line 1, and the bottom line is line 24. VTAB,
unlike TAB, is not used within a PRINT statement.

You can tab horizontally with HTAB if you don’t want to use a
PRINT statement. HTAB works like TAB except that it is not used
within a PRINT statement. Also, HTAB can cause printing to
begin either to the left or to the right of the current printing
position. The leftmost character on a*line is in position 1,
while the rightmost character is in position 4¢. On the next
page is a short program that demonstrates the use of HTAB and
VTAB:

70

1
‘. pa
0 Q

h.
- =

z

R & e

LN

Before you RUN this program, try (it ain’t easy!) to figure out
what it will do. It’s both surprising and pretty.

TAB works for immediate execution mode, but you can only use
VTAB and HTAB in programs. While TAB, HTAB and VTAB act
somewhat like the co-ordinates in PLOT, there are some
differences. The 40 columns for the TAB instruction are
numbered from 1 to 4@, as they would be on a typewriter, while
the first co-ordinate of a PLOT instruction can run from @ to
39, which is more convenient for programming graphics. Since
characters are taller than the "bricks'" we build graphics with,
there is room for only 24 lines of printing on the screen.
Therefore VIAB’s limits are 1 and 24. A zero or a number that
is too large or too small for TAB, VIAB or HTAB will give you an

FILLEGAL GUANTITY ERRCR

The largest value for VIAB is 24, but the largest value for TAB
or HTAB is 255. Both TAB and HTAB will tab past the length of
the screen line and "wrap around" to the next line. To see this
in action, type

NEW

3¢ FOR K = 1 TO 255

21Z PRINT TAB{K: K

22¢ NEXT K

Then try replacing lines 31¢ and 32¢ with

Z HTAR &
32¢ PRINT K

Lt

Bt v

and adding
332 NEXT &

What happens to the program when you replace HTAB with VTAB?

71

72

Downloaded from www.Apple2Online.com

Talking to a program on the RUN: INPUT and a bouncing ball

Off the walls: a program with lots of bounce
Making sounds: PEEK(-16336)

MNoise for the bouncing ball

For higher notes

Random numbers: RND and INT

Simulating a pair of dice

Subroutines: drawing horses using GOSUB and RETURN
Traces: TRACE, NOTRACE and END

A better horse-drawing subroutine

High-resolution graphics: HGR, HCOLOR= and HPLOT

73

TALKING TO A PROGRAM ON THE RUN

Here is a program that makes a dot of color move across the
screen, bouncing off the right and left sides.

NEW

4% REM CHOOSE BaLL CDLOR

42¢% BALL = 9

44¢ REM SET GRAPHICS MODE

450 GR

48¢ REM STARTING POSITION

S@¢ XOLD = 2¢

52¢ REM MOVE THE BaLL BACK AND FORTH
548 KMOVE = 1

54 REM HNEW X POSITION

S8¢ XNOW = XDOLD + XMOVE

&% REM IE€ BaliL OWN THE SCREENT

620 IF (XHOW > = @) AND (XNOW < 48) THEN GOTO 724
L4 REM CHANGE XMOVE DIRECTION
L& XMOVE = -~ 1 # XMOVE

&8¢ GDTD S8

7@ REM PLOT THE NEW BALL
72¢ COLDOR= BaALL

742 PLDT XNDW, 20

7&4% REM ERASE OLD BALL
78¢ COLOR= &

Bp¢ PLOT XOLD, 28

B2% REM SAVE NEW BALL
B4 X0OLD = XNOW

S48 REM MOVE AGAIN

28¢ GOTD Se¢

You should always give some thought to the naming of variables.
It may seem that XNEW would be a more convenient name than XNOW
until you remember that NEW has a special meaning in Applesoft
and is a reserved word. The reason that the variable XMOVE was
called "XMOVE" will be evident if you change its value. Try
XMOVE = 2 for example. If you set XMOVE too high, the ball will
appear to jump wildly across the screen, with no trace between
positions.

This kind of program is the basis for many typical TV games. It
is worthwhile to spend some time playing with the program,
changing this and that, just to see what can be done with it.

It would be a good idea to SAVE this program so you won’t have
to retype the whole thing if you make a fatal change.

74

When you LIST this program it doesn’t all fit on the screen at

once, and the program lines scroll upward too quickly to be read
easily. One way to see all the program lines is to LIST the
program in portions. For example, you could type

LIST 498, &8¢

and only the lines with numbers greater than 4@#@ and less than
68@ would be printed. Then you could LIST the rest of the
program. You can also use

CTAL

to interrupt the program listing. Try LISTing the program and
then quickly typing

CTRL

before the program lines scroll up beyond the top of the screen.
To start the listing again, type & again.
can also be used to stop the listing. However, will
abort the listing so that it cannot be continued from where it
left off.

You are now in a position to understand the bouncing ball
program, but you might have friends who aren’t. Suppose you
wanted a friend to be able to choose the color of the ball. You

could explain how to change line 42¢, but you’d also have to
explain the possible error messages, and what to do if ...well,

it would take a bit of explaining. It would be better to let
your friend interact with the program. To do this, you can use
an INPUT statement. Change line 42¢ to read

42% INPUT BaALL

When the program executes this statement, a question mark (?)
will appear on the screen, followed by the blinking cursor. The
Apple will then wait until someone types a number and presses
The number typed will become the value of BALL and
the program will resume execution. It might be a good idea to
have the computer tell your friend what is expected. You could
put in PRINT statements such as

2B¢ REM SET TEXT MODE

2¢¢ TEXT

22¢ PRINT “TD SELECT A COLOR FOR THE BOUNCING BALL, "
34¢ PRINT “TYPE A NUMBER FROM 1 TO 15"

3&Z PRINT "AFTER THE QUESTION MARK. *

282 PRINT “THEN PRESS THE KEY LABELLED “RETURNT.

75

You may also incorporate a message into the INPUT statement:

42¢ INPUT “WHAT CDLOR WOULD YOU LIKE THE BALL TO BE
(1-1537 i Babl

Notice that in an INPUT statement the message must be in quotes
and that there must be a semicolon between the message and the
variable name. When the INPUT statement contains a message, no
question mark is added after it. If you want a question mark to
appear, you must include it in the INPUT message.

Your friends can use the backspace and retype keys to correct
mistakes in typing, but if they make a mistake and then press
, they will get an error message. If the character

entered is not a number,

TREENTER

=

will appear on the screen. If too great or small a number is
entered, the program will either let the ball move to the right
side of the screen and then stop, or the message

TILLEGAL QUANTITY ERROR IN 728

will appear on the screen, and the program will stop. For the
most part, the user will not know how to restart the
computer--and shouldn’t have to. Therefore you should make the
program check that all numbers typed by the user are correct.
These lines will do it:

424 REM IS BALL BETWEEN 1 AND 1537

428 IF (BaLL > @ AND (BALL < 1&) THEN GOTO 46£
432 PRINT “THAT WASN'T BETWEEN 1 AND 15. ¢

424 GODTO 42¢

Are you beginning to see why we advised you to leave so much
room between line numbers?

It is good programming practice to make a program as foolproof
as possible. You have advanced to the point where you are
writing error messages for others to read. It may be all right
for a programmer like you to read jargon such as '"?SYNTAX
ERROR", but it is most definitely not all right to force an
innocent user to deal with such nonsense.

76

Each time you use an INPUT statement, your program must check
that what the user types is within certain limits, so that the
program won 't "blow up" or fail in any way. Dealing with the
untutored user (and you must assume that users are not
programmers) is an art in itself. Use of clear English
sentences and careful checking of what the user types are always
required.

By the way, you can INPUT several values with one INPUT
statement. The statement

3P2C INPUT X, ¥, 2

would display a question mark as usual, and then wait for three
numbers to be typed in. The first number would be stored in the
variable named X, the second number in the variable named Y, and
the third in the variable named Z. The three numbers must be
separated by ‘s or commas, and the last number must be
followed by a .

SAVE your best version of the bouncing ball program, just in
case. Then, if you have not done so already, try to add
vertical motion to it. Use the new variables Y1, Y2 and YMOVE.
A solution is given on the next page, but try to work this out
vourself before you look.

When you have this program running the way you want it to, SAVE

it on your diskette or on your tape cassette. We will use it
again later on.

77

OFF THE WALLS

Here is one way to make the ball bounce off all four walls. The
statements in black are the ones that have been added to or
changed from the program which bounced the ball between two
walls.

2B¢ REM SET TEXT MODE

30¢ TEXT

32¢ PRINT "TOD SELECT A COLOR FOR THE BOUNCING BALL, "
34¢ PRINT "TYPE A NUMBER FROM 1 7O 13"

3468 PRINT "AFTER THE QUESTION MARK, "

38¢ PRINT *"THEN PRESS THE KEY LABELLED ‘RETURN‘. "
4% REM CHOOSE BALL CDLOR

42¢ INPUT "WHAT COLOR WOULD YOU LIKE? " BALL

424 REM IS BaLL COLOR 1-1537

428 IF (BALL > @) AND (BALL < 14&) THEN GOTO 448
432 PRINT "THAT WASN'T BETWEEN 1 AND 13"

43& GOTO 420

44¢ REM SET GRaAPHICS MODE

464 GR
48¢ REM STARTING POSITION
50¢ X0LD 2@

51¢ YOLD = 38
52¢ REM MOVE BALL BACK AND FDRTH
54¢ XMOVE = 1

545 REM MOVE BALL UP AND DOWN
55¢ YMOVE = 1

S54¢ REM NEW X POSITION

S5B¢ XNOW = XOLD + XMOVE

4@@ REM IS BaLL ON THE SCREENT

L2¢ IF (XNOW > = @) AND (XNOW < 4¢) THEN GOTD 684
&4¢ REM MOVE BabLL LEFT
&&F XMOVE = - 1 # XMOVE

&8¢ GOTD 580

684 REM NEW Y POSITION

&8& YNDW = YOLD + YMOVE

488 REM IS BALL ON THE SCREENT

&9% IF (YNOW > = @) AND (YNOW < 4@¢) THEN GOTO 720
£92 REM MOVE BALL UP
£24 YMOVE = - 1 # YMOVE

699 GOTO 686

78

7ZZ REM NEW BALL POSITION
72¢ COLDOR= BalLL

74Z PLDOT XNDW, YNOW

74 REM ERASE THE OLD BALL PDRSITION
78% COLOR= ¢

8¢ PLOT XOLD, YOLD

82¢ REM SAVE BALL POSITION
B4¢ XOLD = XNOW

85Z YOLD = YNDW

86 REM MOVE AGAIN

g89¢ GOTO s3B¢

As you will see when you RUN this program, the result is a bit
repetitive. You can alter the pattern of bouncing by changing
the starting values of XOLD and YOLD (lines 5@¢ and 51¢), but
here is a change you might like better:

S8f KNOW = AOLD + XMOVE % PDL(Z: 7 72
84 YNOW = YOLD + YMOVE # FDL(1) / 7%

To see what this does, play with the paddles.

One more suggestion. Why not have another INPUT, giving a value
to a variable called BACKGROUND? Fill the screen with the color
BACKGROUND once, at the beginning of your program (right after

GR). Then, to erase the old ball position, use

7B COLOR= BACKGROUND

BACKGROUND +

Y]

SAVE your favorite version of this program.

MAKING SOUNDS

Clicks, ticks, tocks, and various buzzes are easily generated.
You can make sounds on your Apple if you tap it, scratch your
fingers across it or drop it, but the sounds covered in this
manual are produced by programming it. So go to a quiet place,
and try working through this section.

79

To construct any sound-producing program on the Apple, you will
need this magic formula:

15¢ SOUND = PEEK(-14633641

There is no easy explanation for this formula. The number,
-16336, is related to the '"memory address'" of the Apple’s
loudspeaker, and was built into the electronics of the computer.
You are just going to have to look this number up when you need
it.

PEEK returns the numerical code stored at a certain location in
the computer. At most locations PEEK only returns a numerical
value, but at some locations, such as -16336, it can cause
something to happen. In this case, it causes the speaker to
make a click. Every time the program executes this statement,

the Apple will produce a miniscule "click." RUN the program,
and listen to your computer closely.

Now add this line:
14 GOTO 13¢
and RUN the program. No problem hearing this!

To make your program beep for a limited period of time, add
statements such as

14¢ FOR BEEP = 1 TO 10¢
1&g MNEXT BEEP

Try it.

A tone is generated by a rapid sequence of clicks. Any program
that uses PEEK(-16336) repeatedly will generate some sort of
noise. Since -16336 is such a bother to type, we will insert
another statement that will allow us to substitute a symbol
which is easier to type. Enter the statement

190 S = —1463324
To produce a nice, resonant click, change line 15@ to

PEEXK(S) - PEEK{S) + PEEK(S) - PEEK(S) +

15¢ SOUND =
= REEK S

PEEK (S}

Different numbers of PEEKs in the statement will produce
different quality clicks. Try RUNning some variations. For

80

more buzzy tones, put one of your variations into a loop. In
general, the faster the loop, the higher the pitch.

Hlow, to use these sounds, LOAD the bouncing-ball program called
Off the Walls back into the computer. Try adding a "bounce"
sound each time the ball rebounds from a wall.

One possible solution is given on the next page, but try to work

it out for yourself, first. (Hint: a bounce occurs whenever
either XMOVE or YMOVE changes value.)

NOISE FOR THE BOUNCING BALL

Here is one way to make the bouncing audible. Add these lines
to the Off the Walls program:

24¢ REM SET S TO ADDRESS 0OF SPEAKER

2@ 5 = ~14334

562 REM BOUNCE NDISE

465 FOR B = 1 TO 5

4&7¢ BOUNCE = PEEK(S) — PEEK(S) + PEEK(S) - PEEK(S)
475 NEXT B

£%5 REM BOUNCE NDISE

&4 FOR B = 1 TO 5

497 BOUNCE = PEEK(S) - PEEK(S) + PEEK(S) - PEEK(S)
&£98 NEXT B

Now try your own sounds. Why not make a different sound off
each wall?

FOR HIGHER NOTES,
MULTIPLE STATEMENTS ON ONE LINE

To get still higher tones, another feature of Applesoft BASIC
can be introduced. It is possible to put more than one
statement on the same line. Try this one-line program:

The colon (:) can be used to separate statements in any program
where you wish to have more than one statement on a line.
However, only the first statement on the line has a statement
number, so you can only branch to the first statement with a
GOTO.

Now add

81

1

44 FOR PAUSE = 1 TD 2500 : NEXT PAUSE

T

The advantages of multiple statements with a common line-number

are these:

l. The statements are executed faster. (This is an advantage
only if you need more speed.)

2. More of your program can fit on the screen.

3. It can save some typing.

4. You can group statements together that collectively perform
one function, such as the pause in line 4§ above.

5. It requires less memory. (This is an advantage only if you
are running out of space, and the computer gives you an ?0UT
OF MEMORY or a PROGRAM TOO LARGE message while you are
entering a program.)

There are also some disadvantages:

1. The program is harder to read.

2. It is harder to modify or correct the program.

3. You can branch only to the first statement in a line.

4. It is very discouraging to type in a long, multiple
statement only to have it return a ?SYNTAX ERROR when the
program is RUN, making it necessary to retype the whole
statement.

RANDOM NOTES

Try this short program on your Apple.

PRINT RMD(1)

cOTo
(EINRRE

The RND in line 10¢ stands for RaNDom. The RND function returns
RaNDom numbers. Stop the program with

The numbers generated by this program were RaNDom decimal
fractions between zero and one.

Change line 10¢ to
122 PRINT RRND(&)

and RUN the program.

82

Again stop the program with . Hmmm, interesting. The
random numbers are still all between zero and one. Write down
the last number that was generated so you’ll remember it.

Now change line 10@ again, this time to
1gZ PRINT RND(@)

and RUN it. Stop the program and compare what you wrote down
with what is now on the screen. RND(@#) returns the last RaNDom
number that was generated.

Random decimal fractions between one and zero can be a little
clumsy. Often integers (numbers like 3,6 and 1¢) are easier to
use. To get random integers from @ to 9 we have to add a few
more lines to the program. Type

NEW
9% REM ASSIGNS RND NUMBER TO X
i@ X = RND{1)
1ig REM MULTIPLIES X BY 1@
1280 X = 1 # ig
13¢ REM CHOPS OFF THE FRACTION
14 X = INT(X}
15¢ PRINT X
i6p GOTO 1@

Line 14@ introduces the INT function. The statement INT (X)
gives the largest integer that is less than or equal to the
value of X. For instance, if the value of X is 3.6754, then

INT (X) is equal to 3. The parentheses following INT can contain
any arithmetic expression or numeric variable.

Now RUN the program. Does it work the way you expected? To
change the program so that it generates numbers from one to ten
instead of from zero to nine just add one to the value of X by
adding this line to your program:

143 X = X + 1
Try it.
The program may seem a little complicated at first. To see step

by step what happens, you can add lots of PRINT statements.
Modify your program to look like this one.

83

¢ REM ASSIGNS RND NUMBER TO X
igZ ¥ = RND(L} : PRINT “X=RND{1:“, X
125 PRINT
11¢ REM MULTIPLIES X BY 1¢
120 X = % # 1if : PRINT "X=¥#1@", X
125 PRINT
13¢ REM CHOPS OFF THE FRACTION
142 X = INT{X} : PRINT "X=INT(X:i%, X
143 PRINT
13¢ REM ADDS 1 TO THE VALUE OF X
16 X = X + 1 : PRINT "X=X+1"
17¢ PRINT X
175 PRINT
18¢ FOR PAUSE = 1 TO 20070 : NEXT PAUSE
19¢ GOTOD 1¢g

RUN this program, and see what it does.

If you want to get fancy, you can condense this program to just
one line:

10 PRINT INT (1Z # RND(1}) + 1 @ GOTO 1g¢

Do you know how line 10§ works?

SIMULATING A PAIR OF DICE

You can use what you’ve learned about random numbers to write a
program that pretends to be a pair of dice.

NEW

1¢¢ PRINT “WHITEDICE",

1ig PRINT INT (& % RND(1): + 1
12¢ PRINT “REDDICE",

13¢ PRINT INT (& # RND(1)} + 1

This program generates random integers from one to six for each
die. To reroll the dice, reRUN the program. Can you write a
program that uses these "dice" to play a game? Try it.

Try writing a one-line program that generates random numbers
from 1 through 5@. From @ through 25. Make up your own
numbers. Remember to add (l) to the random number if don’t you

want to generate zeros.

Here’s a colorful way to use RaNDom integers.

84

NEW

20¢ GR

21¢ REM CHOOSE A RANDOM COLOR
22¢ COLOR= INT (1&) % RND(1)?}
23 REM CHOCSE A RANDOM POINT
247 X = INT (48 # RND(1})

25¢ ¥ = INT (4f # RND(1}}

24¢ REM PLOT THE RANDOM POINT
27¢ PLDT X, ¥

ZB¢ REM DO IT AGAIN

29¢ GOTD 22¢

Try using RND in other programs. Can you write a program that
draws lines in RaNDom colors across the screen?

SUBROUTINES

Imagine that there is a game for which you need a piece that
looks like a blue horse with orange feet and a white face. Here
is a program that draws such a piece:

NEW

1¢2¢ REM PROGRAM TO DRAW A BLUE HORSE WITH WHITE FACE
AND ORAMGE FEET

igig GR

ig2¢ COLDR= 7 : REM LIGHT BLUE

i3 PLOT 15,15

ig4ag HLIN 153,17 AT 16

195@ CDLOR= 9 : REM ORANGE

1864 PLOT 15,17

137¢ LoT 17,17

ig2g COLDR= 13 : REM WHITE

igeg PLOT 14,185

There is nothing wrong with this program; it does draw a blue
horse with orange feet and a white face. Now, suppose you
needed to draw another horse somewhere else on the screen. You
could rewrite this program with new values for X and Y, but that
is a bother. There should be some way of using the same program
to put a figure anywhere on the screen without having to rewrite
it each time.

The key to doing this begins with the observation that you can
move a point which is at coordinates (A,B) to the right by
adding to the value of the first coordinate, A in this case.
For example, the point (4,17) moves 1§ columns to the right if
you add 1¢ to the first coordinate, making the point (14,17).

85

Likewise, a point moves left if you subtract from the first
coordinate (or add a negative value). A simple experiment will

show you that adding to, and subtracting from, the second
coordinate moves points down and up, respectively.

With these facts in mind, you can rewrite your program to
"center" the horse at almost any point (X,Y) on the screen. Why
"almost" any point? Because, if you choose a center point at an
edge of the screen, the horse will go off the screen, and this
might give you an ?ILLEGAL QUANTITY ERROR IN 1¢¥3@ (or some other
line number) message. Here is an improved program.

NEW

1¢¢¢ REM PUT A HORSE ANYWHERE i THE SCREEN
1gig COLOR= REM LIGHT BLUE

120 PLOT X.¥ -~ 1

4

]

1920 HLIN X. 4 + 2 AT ¥
1Z4¢ COLOR= 9 REM ORANGE
1gs5¢ PLOT X.v + 1

1gad LOT X + 2,7 + 1

ig7¢ COLOR= 15 : REM WHIT
1geg¢ PLOT X - 1,v-1

You notice that the GR has been left out. We want to use this
part of the program to put several horses on the screen. A GR
here would clear the screen before each new horse was drawn.

This program can’t be run just as it is. First you must set
GRaphics mode, and choose X and Y. A good first try at using
the horse program might be:

2% GR

3¢ REM FIRST HORSE CENTER
4¢ X 12

50 ¥ a5

4

If you try to RUN this, you do get a horse at the desired
location, but the program ends there. We want to put two horses
on the screen. What if you could write

&%

7¢ REM SECOND HORSE CENTER
Bg X = 33

PE Y = 2

13

Do the portion of the program at line 10¥0¢ again and then end.

86

Wouldn’t that be nice and easy? You know that the computer
can’t read those strange instructions at lines 6¢ and 10¢. It
can, however, read

GOSUBR 1288

in Applesoft. A program such as the one starting at line 10¢¢
is called a subroutine. GOSUB 1(¢f tells the computer to GO

to the SUBroutine beginning at line 1@#@@ and start executing at
that statement. It also tells the computer to come back to the
line that follows the GOSUB statement when it is finished with
the subroutine. The computer knows the subroutine is finished
when it encounters a RETURN statement. To make your
horse-drawing partial-program into a complete subroutine, add
the line

129¢ RETURN

Now you can write that "what if you only could" program:

2¢ GR
3¢ REM FIRST HOREE CENTER

ag X = 12

v = 35
Z GOSUB 100¢
7¢ REM SECOND HORSE CENTER
BZ X = 33
g ¥ = 2

10¢ GOSUR 1020

Now RUN the program. You get an error message:
TRETURN WITHOUT GOSUB ERRDR IN 129¢
but otherwise the program seems to RUN fine. In effect, you

have added a new statement to Applesoft: a horse-drawing
statement. Now you can use the statement

GOSUR 1227

to draw one of these special horses at whatever X,Y location you
have chosen.

TRACES

The portion of the program from line 10¢@ to 1¢9¢ is called a

subroutine or subprogram. The portion of the program from
line 20 to line 1¢¢ is called the main program.

87

To see the program’s flow, or path of execution, you can invoke
a special feature called TRACE. This special feature can show
you why the Apple gave an error message when the horse-drawing
program was executed. Add this line to the main program.

ig TRALE

and, for a moment, delete line 2@, Put the Apple into TEXT mode
and RUN the program.

The numbers you see on the screen are the line-numbers of each
statement as it is executed. You can see how the program begins
at line 1@, continues through the main program until the
subroutine call, then executes the subroutine, goes back to the
main program, executes the subroutine again, and, not finding
any smaller line numbers, goes to line 1¥@ and executes the
subroutine again. This is where the problem occurs. Do you
understand the error message now?

To remedy the problem, add this new line to the program:

i

11g END

When the program gets to line 11@, it will do just what the line
says: end. RUN the program once more. No more error message.
As you have just seen, TRACE is very handy when you are having
problems with a program. If you want to TRACE only part of a
program, you can use the NOTRACE statement. Add this line:

&5 NOTRACE

and the program will be TRACEd only up to the execution of line
65.

TRACE can also be issued in the immediate mode. Simply type

TRAZE
RUN

and your program will be TRACEd.

Once you have issued the TRACE command, whether in immediate
mode or as a statement in your program, your program will be
TRACEd every time you RUN it, from then on. To stop TRACE, you
rust issue a NOTRACE command, either in a line of your program,
or in immediate mode.

88

A BETTER HORSE-DRAWING SUBROUTINE

Subroutines should be written so that problems from possible
errors do not arise when the program is RUN. One problem with
our horse-drawing subroutine is that some values of X and Y will
cause the horse to go off the edge of the screen. This can be
prevented by a set of statements such as:

1212 IF X <01 THEN X = 1
114 IF X » 37 THEN X = 37
igie IF Y <O 1 THEN Y = 1
igig IF ¥ > 38 THEN Y = 3B

(Why should the maximum Y value be 38, while X must be limited
to 377)

If there is any attempt to locate a horse off the screen, the
horse will be moved to the nearest edge. There are other
possible strategies, such as giving an error message and
stopping the program. However, our choice has the advantage
that it doesn’t stop the program, and you can see that something
is happening.

Sometimes you want to be able to change the values in a
subroutine for different program GOSUBs. For example, a second
player may want to place a piece, and that should be a horse of
a different color. One way to do this would be to type the
whole subroutine again, with different colors. However, let’s
try using variables rather than numbers. Instead of line 1(1¢
saying COLOR = 7, it could say

igig COLOR= BODY
Similarly, you could write

ig4g COLOR= FEET
ig78 COLOR= FACE

Then the main program could go like this:

2¢ GR

3¢ REM 1ET PLAYER’'S HORSE COLDR
4¢ BODY = 7 REM LIGHT BLUE

5¢ FEET = % : REM ORANGE

&% FACE = 13 : REM WHITE

7¢ REM 15T PLAYER'S HORSE CENTER
BZ X = 19

e N = 20

ig¢ GUBEUB 10g0

89

and so on (be sure to follow with an END statement, before you
try to RUN it). That’s a lot of statements each time you want a
horse, but it is still fewer than if you had to type out the
entire horse program each time. For additional programming
ease, a rather subtle trick is to have a subroutine that assigns
the colors for each player’s horse--and have each of those
subroutines call the horse-drawing subroutine, in turn.

2¢0¢ REM DRAWS BLUE HORSE WITH DRANGE FEET AND WHITE FACE
2¢1¢ BODY 7 : REM LIGHT BLUE

2020 FEET % . REM ORANGE

230 FACE 13 : REM WHITE

204¢ GOSUB 10¢0

205¢ RETURN

Huu

25¢¢ REM DRAWS ORANGE HOREE WITH PINK FEET AND GREERM FACE
Z51¢ BODY ? : REM ORANGE

2528 FEET 11 : REM PINK

253¢ FACE = 12 : REM GREEN

254¢ GOSUR 1¢2¢

2550 RETURN

L}

Now all you need, to put a blue horse with white a face and
orange feet at (1¢,11), is

3¢ REM 18T PLAYER'S HORSE
ig X = 1@

50 ¥ = 11

&g GOSUR 2002

To put an orange horse at (19,2) all you need is

7¢ REM 2ND PLAYER'S HOREGE

B X = 19
0 Y 2

1gZ GDSUB 250¢

Both the horse-drawing subroutines on the previous page,
beginning with lines 20¢)¢ and 25@¢¥, call another subroutine that
begins at line 1¢@@. Things get to be quite efficient at this
stage. Once you have written a good subroutine that checks for
errors and uses variables that you can set in the calling
program (which may be the main program or another subroutine),
then you can pyramid other subroutines upon it. This makes main
programs much easier to write. Using the three subroutines, it
is very easy to put up an attractive display of horses.

But first, another handy routine:

90

GPZ® REM CHOOSES RAMDOM X, Y
ZZi@ X = INT (RND(1) # 37) + 1
? i

28y o+

Y o= INT (RND(1}) #

]
Z RETURN

303
And, now for the main program.

1% REM SET GRAPHICS MODE

¢ GR

37 REM CHDOSE A RANDDM POINT

4% GOBUB 3822

5% REM PUT A BLUE HORSE THERE

&F GOSUB 2882

7¢ REM CHODSE ANDTHER RARMDOM POINT
8¢ GOSUB 20¢%

2% REM PUT &N ORANGE HORSE THERE
1¢¢ GDSUBR 2522

11 REM DD IT ALL AGAIN

i2¢g GOTD 3¢

This is how a main program should look if you are a good
programmer: mostly REMs and GOSUBs. The work should be done in
relatively short subroutines, each of which is easy to write,
and complete in itself. Feel free to use TRACE to see how this
sample program does its stuff.

HIGH-RESOLUTION GRAPHICS

We call the kind of graphics you have been using so far,
low-resolution graphics. In this section you will learn to
use another kind of graphics called high-resolution graphics.
This new kind of graphics lets you draw with much more detail
than you could with the 40 by 40 low-resolution grid. The new
high-resolution graphics screen is 28(by 16@ plotting points.
The horizontal coordinates start with @ at the left of the
screen and end with 279 at the right. Likewise the vertical
coordinates go from @ at the top of the screen to 159 at the
bottom.

High-resolution graphics are not difficult to understand. Often
high-resolution graphics commands are the same as the corre-—
sponding low-resolution graphics commands except for the
addition of an H (for High-resolution). A thorough knowledge of
low-resolution graphics will be helpful to you in this section.

91

Type
HEGR

to get into high-resolution graphics mode. This command clears
the screen to black, leaving four lines at the bottom for text.
As with low-resolution graphics, high-resolution graphics allow
you to use vertical coordinates that would be in the text area
(192 is the maximum), but these points are not shown on the
screen at all. If the cursor is not visible, press a few
times until it appears near the bottom of the screen.

(=

The HGR command is not available with cassette or diskette
Applesoft. High-resolution graphics are not available in
cassette and diskette Applesoft unless your Apple has at least
24K of memory. If you have at least 24K of memory and you wish

to use high-resolution graphics with cassette or diskette
Applesoft, see Appendix D for more information.

High-resolution graphics are truly wonderful, but you do have to
make some sacrifice in order to use them. There are fewer
colors available in this new kind of graphics mode. The
high-resolution colors go from @ (black) to 7 (white). The
colors are

@ blackl 4 black?
1 green 5 orange
2 wviolet 6 blue

3 whitel 7 white?2

These colors will vary from TV to TV and according to their
positions on the screen. A high-resolution dot plotted with
color number 3, for example, will be blue if the horizontal
coordinate of the dot is even, green if the horizontal
coordinate is odd, and white only if both the even and the odd
horizontal coordinates are plotted. This is due to the way home
TVs work.

If you have an older Apple (prior to S/N 6@@@) colors in the
second column appear identical to those in the first column.

92

only instruction for PLOTting in high-resolution graphics is

D)T. To try this out, once you have issued the HGR command,
tvpe

= AR= 7
COLOR= 3

HPLDT 130, 106G

e last line will plot a white, high-resolution dot at point

X o= 13¢, Y = 100.

JHPLOT 130,100
b}

Drawing lines is even easier in high-resolution graphics than it
in low-resolution graphics. You simply HPLOT from one point
the screen TO another point. To draw a line along the top

edge of the screen, type

HPLOT &, C TO 27%9.0

If you want to draw a line from the corner at point 279, # to
the next corner of the screen all you have to do is type

O

TD 279,159

and a line appears along the right edge of the screen. When you
u this last statement, the new line takes its starting point
its color from the point previously plotted (even if you

: issued a new HCOLOR command since that point was plotted).
wu can "chain'" these commands and HPLOT several lines in onc

¢

statement if you wish.
sl

inplesoft on diskette or cassette cannot use this "chaining"

ture. If you have Applesoft on diskette or cassette, you
1se HPLOT statements specifying at most, two points in
o draw lines.

93

Clear the screen with HGR, and try this on your APPLE:

HRLOT @, ¢ 7O 279.%.70 279,159 10 @, 159 TO . ¢

There should be a line around the edge of the screen. If there

isn’t a continuous line around the edge of the screen, first
check that your typing was correct. If the line still isn’t

there or isn’t continuous, change HCOLOR and try again. Some

parts of the screen only show up in certain colors on certain
TVs.

,8 T0 279,08 T0O 279,139 T0

Not only is drawing lines on your Apple easy, but diagonal lines
are just as easy to draw with high-resolution graphics. To draw
a line from the top left corner of the screen to the bottom
right corner just type

HPLOT Z 2 TO 279, 159

Practice drawing high-resolution lines of varying length and
color.

Here is a program that makes your Apple into a high-resolution
sketching screen.

Sag Y = 159

7
&,
-

Line 240 is included because the PDL function can return
game—controller values up to 255, and the Y coordinate would be
off the screen if its value were larger than 159. RUN this
program.

94

This program works, but it would be improved if it were easier
to draw a solid line. Those gaps between plotted points are not
always desirable. You can improve the program by typing the
following lines:

22¢ GODSUBR 1¢¢¢
23¢ HPLOT X, ¥
24¢ GOSUR 1¢¢¢

2S¢ HPLOT TO X,V

2&¢ GOTD 24¢

10@¢ X = PDL{G: / .13
ii¢ ¥ = PDL(1Y / 1. &
1328 RETURN

LIST the program and check it carefully to make sure you typed
everything correctly. Here’s what the program does.
High-resolution graphics and HCOLOR are set, and then the
program goes to the subroutine beginning at line 1¢@¢. The
subroutine determines the value of the X and Y coordinates. The
game controls each return a maximum value of 255. Because
high-resolution graphics uses horizontal coordinates from @
through 279, the values returned by PDL(@) are divided by .913
to expand their range to the full screen width. Similarly, the
values returned by PDL(1l) are divided by 1.6 to compress their
range down to the range of high-resolution vertical coordinates:
@ to 159. As with low-resolution graphics, the coordinate
actually plotted is the nearest integer value less than or equal
to the given value. Line 1(2¢ RETURNs to the main program, and
then line 23@ plots the point X,Y. Next the program goes back
to the subroutine, gives X and Y new values and RETURNs to line
25¢ in the main program where a very short line is drawn from
the old point X,Y to the new X,Y. The GOTO in line 260 repeats
all of the program except the HGR and HCOLOR instructions,
getting new values for X and Y from the position of the game
controls, and then PLOTting the new X,Y position. Use
to stop the program.

There is a reason for drawing lines instead of plotting each
point separately. It takes a certain amount of time to plot a
point, and when the Apple plots points one at a time it can’t
always keep up with the game controls. That’s why there were
spaces between dots when you moved the knobs on the game
controls quickly in the first sketching program. Drawing a
short line to each new position specified by the game control
knobs remedies this: in drawing a line from one point to
another, all the points in between are plotted automatically and
much more quickly than if they had been plotted one at a time.

95

Now SAVE the program, and then RUN it.

Here’s a program that draws pretty ''moire'" patterns on your
prog P

screene.

NEW

9% HOME

1¢¢ VTAE 24: REM MOVE CURSOR TS BOTTOM LINE
12¢ HGR : REM SET HI-RES GRAPHICS MODE

14¢ A = RND (1) # 279. REM PICK AN "a&" FOR CENMNTER
i4¢ B = RND (1) # 159 REM PICK A "B" FOR CENTER
i8¢ N = INT (RND (1) # 4 + 2: REM PICK A STEP CI

ZE

2¢¢ HTAB 15: PRINT “STEPPING BY "iN:

22¢ FOR X = ¢ TO 278 STEP N: REM STEP THROUGH A Va
LUES

240 FOR S = ¢ TO 1: REM 2 LINES, FROM X AND X + 1

26¢ HCOLOR= 7 # S: REM FIRST LINE BLACK, NEXT WHIT
E

28¢ REM DRAW LINE THROUGH "CEWTER" TO OPPOSITE SID
E

2¢¢ HPLOT X + S, ¢ TO A/B TO 279 - X ~ S, 159

22¢ NEXT &, X

24¢ FOR Y = ¢ TO 158 STEP N: REM STEP THROUGH B VA
LUES

364¢ FOR S = ¢ TO 1: REM 2 LINES, FROM B AND B + I

38¢ HCOLOR= 7 # S: REM FIRST LINE BLACK, NEXT WHIT
£

46¢ REM : DRAW LINE THROUGH "CENTER" TO OPPOSITE §
IDE

42¢ HPLOT 279.Y + S TO AB TO ¢, 159 - ¥ - §

44 NEXT S,V

44¢ FOR PAUSE = 1 TO 15¢¢: NEXT PAUSE: REM DELAY

48¢ GOTO 12¢

This is a rather long program; type it carefully and LIST it in
portions (LIST $,32¢ for instance) to check your typing. When
you are sure it is correct, RUN the program.

o
If you have Applesoft on diskette or cassette, you will have to

type the plotting chains in lines 30@¢ and 42¢ as separate HPLOT
statements. Here’s an example of how to do this:

a¢g¢ HPLOT X + S. @ 70 A/ B
31¢ HPLOT TO 279 - X — S, 199

42¢ HPLOT 279,Y + S TO A/E
43¢ HPLODT TO ¢, 159 - Y - S

96

As you saw in lines 32(and 440, one instruction can provide the
NEXT for more than one FOR statment. Be careful that you list
the NEXT variables in the right order, though, to avoid crossed
loops.

To go back to programming, stop the pattern by typing

and then
TEXT

Can you think of ways to change the program? After SAVEing this
version on your diskette or cassette recorder try making the
value of HCOLOR change randomly. Try drawing first orange then
blue lines, or only blue lines.

There is much more to high-resolution graphics than is presented
here. When you feel confident using the high-resolution
graphics commands presented in this section, refer to chapters
eight and nine of the Applesoft BASIC Programming Reference

Manual for more information on high-resolution graphics
capabilities.

97

98

1¢¢
1¢5
165
108
114
111

Stringing along: LEN, LEFT$, RIGHTS$, MIDS and CLEAR
Concatenation got your tongue?: putting strings together
More string functions: VAL and STRS

Introducing arrays: DIM

Array error messages

Conclusion

99

STRINGING ALONG

Would you like to see your name spelled backwards? So far we
have played with graphics and numbers, but computers can also
manipulate letters and symbols. Your computer can deal with a
single character, or it can handle a whole string of

characters at a time. This will seem fairly natural, since we
humans also usually deal with characters in bunches. Variables
which contain character strings, like numeric variables, have

names. String variable names follow the same rules as numeric
variable names except that they end with a dollar sign ($).
Here are some examples of string variable names:

The variable A is different from the variable AS$, and both can
be used in the same program.

If you wish the string variable called NAMES (pronounced
""NAME-dollar") to contain the letters "HARRY S. TRUMAN" you can
type

Notice that
must be enclosad

you put into a string variable
The statement

variable NAMES: in this case, the
the United States. Thus, when you
-hat you need often, you can store

a short name.

will print the
name of the 335

have a st
the string

There are more Applesoft instructions that manipulate
strings. Sup vou want to know the length of a string (how
many characters it contains). You can type

or you can type the equivalent statement,

and the Apple will PRINT the LENgth of the string, in this case
15. Notice that spaces count as characters.

100

The number of characters in a string may range from @ to 255.

If you try to use more than 255 characters in a string you will
just get the ?SYNTAX ERROR or ?STRING TOO LONG ERROR message. A
string with @ characters is called a null string. Refer to

the Applesoft BASIC Programming Reference Manual for more
information on null strings.

On some occasions you may want to PRINT only a part of NAMES.
To do this you can utilize three very handy functions: LEFTS,
RIGHTS and MIDS.

If, for instance, you want to PRINT the first five letters in
NAMES$ you can type

and

should appear on the screen. If you type

will appear. For each program you write that uses string
variables, you must assign the string value within the

program. Each time you RUN a program, all numeric variables are
first set to the value @ and all string variables are set to
contain the null string. Here’s a short program that uses the
functions LEN and LEFTS.

RUN this program. The RIGHTS command is just like the LEFT$
command except that it uses the rightmost characters in the
string. Now write another program substituting RIGHT$ for
LEFT$. What happens when you RUN it?

If you want to use characters starting from the middle of the

string instead of the beginning or end, the MID$ function is
what you need.

101

Type

Your computer replies with

since § is the seventh character in the string. Now try this
program.

Do you get what you expect when the program is RUN?

Suppose you want to PRINT just the "Y S. T" from the string
called NAMES. To do this you add another argument to the MIDS$
function.

The first number (5) specifies the string character space at
which the Apple is to begin PRINTing. The second number (6)
tells it how many character spaces to PRINT. Thus the
instruction is interpreted by the Apple as "find the fifth
character space in NAMES, and PRINT six character spaces
beginning at the fifth and moving to the right." Change line
21¢ of the previous program as follows, and RUN it.

Don’t go any further in this book until you’ve thoroughly tested
the LEFTS$, RIGHTS and MIDS functions. Or else.

Consider this program.

102

This program illustrates some common programming practices.
Notice how it finds the position of a character in a string.
This method of using a loop to scan through a string, omne
position at a time, is very common. Also notice the function of
the blank spaces in the PRINT statements. What would happen to
the output without these blank spaces? Finally, observe that
the program limits are always set by LEN(AS$), rather than the
actual number of characters in the alphabet. This allows the
program to work even if you specify a different -"alphabet"” in

line 2¢@. Try it and see.

You can substitute one string for another with a replacement
statement such as

This statement copies the contents of A$ into X$. However, you
cannot use partial string notation on the left side of a
replacement statement. For example, the statement

is illegal, but the statement

is OK. Only a variable can be on the left side of a replacement
statement.

Oh yes--still want to see your name spelled backwards? The
program on the next page will do just that.

103

RUN this program, trying several different names. After the
program executes itself a few times you will notice that there
is a something wrong. Line 140 is the key to the problem. If
your name is Sally, for instance, you would type it when asked
and thus set N$ to SALLY and R$ to YLLAS. Perhaps your friend
Joe is there with you and wants to see his name spelled
backwards too. The next time the program asks for a name he
would type his name, setting N$ to JOE. Line 140 would then set
R$ to the old R$ plus N$ spelled backwards, in other words,
YLLASEOJ. What is needed is a command that resets string
variables to zero, so R$ can be refilled with characters after
each GOTO.

Fortunately there is such a command in Applesoft. It is the
CLEAR command. CLEAR resets all variables of every size, shape
and color to $. Add this line to your program.

Now RUN the program again.

The CLEAR command can also be used in immediate execution. Type

Now type

and then

again. Did your Apple give @ as the value of N?

104

CONCATENATION GOT YOUR TONGUE?

It is possible to add a second string onto the end of an
existing string using the plus (+) sign. This process is called
concatenation. Try the following on your Apple.

Your Apple will respond with

Concatenation is especially useful if you wish to take a string
apart and then put it back together with slight modifications.
For instance, if you wanted to create a new string that was the
same as D$ except that the spaces between words would be
substituted with dashes, you could type

and

would appear on your screen.

Here’s a program that uses concatenation.

And that’s how you can do concatenation.

MORE STRING FUNCTIONS

Strings can be made up of almost any kind of character,
including numbers. However, like items in a PRINT statement,
the characters between the quote marks in a string cannot be
interpreted arithmetically even if they are numbers. To see
what happens when you try, type

105

Your Apple will confusedly print

and not be able to deal with the last statement. We need the
help of the

(short for VALue) function to alleviate this problem.

The VAL function returns the VALue of the contents of a string
as opposed to its actual contents. Type

and then type

Both commands apparently get the same result; however,
appearances can be deceiving. You already know that if you type

your Apple will respond with

Try typing

and

appears on the screen. Notice that the string variable name
which is the argument of the VAL function must be enclosed in
parentheses.

What if you want to put the value of C$ minus 21 into an
ordinary {(non-string) variable? Simple. Just type

106

see what you get. Are the contents of Q as you expect? You
even use VAL to add the numerical value of two different
1gs. Toc try this, create a new string

1d then type

Iry VAL with different strings, including strings that begin or
end with letters.

w

ometimes it is necessary to change a number into a string. The
TRS function, which works much like the VAL function in

everse, can be used to make this change. Suppose you want to
hange the numeric variable P to a string variable. Typing

w

1, Y

will show you how STRS works. Here is a program that uses STRS$
and VAL.

Do you understand how the program works? Why are there commas
in lines 37¢ and 38(¥? Try deleting line 330 to see what its
effect is. The first four lines of this program demonstrate the

107

first steps toward making a truly "bomb proof'" input routine.
See what inputs can still stop this program, and then devise
ways to catch those inputs before they can cause the program to
stop.

INTRODUCTION ARRAYS

In this section on arrays we use examples from mathematics, but
they are from recreational mathematics and require nothing

beyond elementary arithmetic.

Arrays enable you to select any element in a table of numbers,
and the programming power they give you more than compensates
for the bit of thinking and experimenting you must do to become
familiar with them.

An array is a table of numbers. The name of this table,
called the array name, is any legal variable name: A, for
example. The array name A is distinct and separate from the
simple variable A.

To create an array, you must first tell the computer the maximum
number of elements you want the array to accommodate. To do
this you use a DIM statement (DIM stands for DIMension). The
elements in an array are numbered from @, so to DIMension an
array called A that will have a maximum of 16 elements, type

The DIM statement above has given us 16 new variables. They
behave exactly like the variables you have come to know and
love. They are:

and so on, down to

Although you may find them awkward to type, they can be used
just as any other variable is used. The statement

is perfectly correct. The number in parentheses is called a
subscript, and the notation A(l2) is read "A-sub-twelve." The

108

subscript can be an arithmetic expression or it can be
represented by a variable.

Type the following program. It illustrates the use of variables
in the subscript and prints out a display of the contents of
each array element.

If an array is used in a program before it has been DIMensioned,
Applesoft reserves space for 11 elements (subscripts @ through
1¢). However, it is good programming practice to DIMension

all arrays.

Suppose you want to write a program that generates the numbers
from one to eight in scrambled order. To accomplish this you
need to manipulate tables of data. This is just the kind of
thing for which arrays are excellent. The program on the next
page accomplishes this.

109

Do you understand how this program works? It first fills an
array with numbers and then scrambles the contents of the array.
Notice that you don”t have to start filling the array at zero.
Here’s a description of what some of the more elusive program
lines do. Lines 230 through 25¢ fill the array and assign each
array element a number corresponding to its array number

(GLASS (1) = 1, etc.). Line 27¢ sets the new variable WINE to
numbers 1 through 8. Line 28(sets variable MILK to random
integers from 1 to 8. Then line 3(¥¢ makes sure that the value
of WINE is not equal to the value of MILK at any given time.
The contents of variables GLASS(WINE) and GLASS (MILK) are
switched in line 31¢). Finally the array is printed with lines
33¢ through 350.

The switching that occurs in line 31¢ can be thought of like
this. Lets say we have two glasses—-one is a wine glass (WINE),
and the other is a milk glass (MILK). Oh no, there was a
mistake. The milk is in the wine glass and the wine is in the
milk glass. Luckily we have an extra glass (TEMP). We can pour
the milk into the extra glass, then pour the wine into the wine
glass, and, finally, pour the milk into the milk glass. Now
both drinks have been switched to their proper glasses.

ARRAY ERROR MESSAGES

Here are a few error messages you might generate while
progranming with arrays.

?REDIM’D ARRAY

This error message occurs when an array is dimensioned more than
once in the same program. Often this error occurs because the
default dimension has been used, and a dimensieon statement has
been added to the program afterwards.

?BAD SUBSCRIPT ERROR

If an attempt is made to use an array element that is outside
the dimension of the array, this error message will occur. For
instance, if A has been dimensioned to 25 with the statement DIM
A(25), referring to the element A(52) or any other element whose

110

subscript is less than @ or greater than 25 will give the ?BAD
SUBSCRIPT ERROR.

?7ILLEGAL QUANTITY ERROR
You will get this message if you try to use a negative number as
an array subscript.

These are some of the ways that you can use arrays. The arrays
used here are all one dimensional arrays. You can also use
arrays that have two or more dimensions. See the Applesoft
BASIC Programming Reference Manual for more a more information
on arrays.

CONCLUSION

This book has presented the core of Applesoft BASIC. If you now
go through this book again, writing your own programs with the
statements that have been presented here, you will solidify your
knowledge considerably. The Apple has many more abilities, and
once you have mastered those presented here, there are whole new
worlds for you to explore.

1M1

112

114

126

128
128
128
129
129
130

131

131
132
133
133
134
136
137

149

143

147
147
148

Appendix A: Summary of Commands

Appendix B: Reserved Words in Applesoft

Appendix C: Editing Features
Left and right arrow keys
Pure cursor moves
Deleting program lines
Clearing the screen
Summary of edit features

Appendix D: Firmware Applesoft versus

Cassette or Diskette Applesoft

Introduction
General discussion
An important note

Part
Part
Part
Part

Part

1

2:
3
4:

5o

The Applesoft II firmware card

Diskette Applesoft

Cassette tape Applesoft

Differences between diskette or cassette
Applesoft and firmware Applesoft

Memory locations used by DOS and by
Applesoft BASIC

Appendix E: Error Messages

Appendix F: The 0ld Monitor ROM
Using the old monitor ROM
Recovering from accidental RESETs

113

APPENDIX A: SUMMARY OF COMMANDS

(This appendix contains both Applesoft and DOS commands.)

The following is a summary of the commands that can be used in
the Applesoft BASIC programming language. For more information
on these commands, see the Applesoft BASIC Programming Reference
Manual.

Arrow Keys = €—

The keys marked with right— and left-pointing arrows are used to
edit Applesoft programs. The right-arrow key moves the cursor
to the right; as it does, each character it crosses on the
screen is entered as though you had typed it. The left-arrow
key moves the cursor to the left; as it moves, one character is
erased from the program line which you are currently typing,
regardless of what the cursor is moving over.

CALL -151

Causes the asterisk prompt to appear indicating that the Apple
is now responding to its native language called machine
language. If you are not an advanced programmer, you will
probably not need to use this command.

CATALOG

Displays on the screen a list of all the files on the diskette
in the specified or default drive. The file type and the number
of sectors occupied by the file, are indicated to the left of
the file name. The file types are:

I The file is an Integer BASIC program.

A The file is an Applesoft BASIC program.

T The file consists of Text: it was created
by a WRITE command.

B The file is a bit-for-bit image of a portion
of Apple’s memory.

The CATALOG command is a DOS (Disk Operating System) command,
not an Applesoft command.

CLEAR

Sets all variables to zero and all strings to null.

114

COLOR = 12

Sets the color for plotting in low-resolution graphics mode. In
the example, color is set to green. Color is set to zero by GR.
Color names and their associated numbers are:

¢ black 4 dark green 8 brown 12 green

1 magenta 5 grey 9 orange 13 yellow

2 dark blue 6 medium blue 10 grey 14 aqua

3 purple 7 light blue 11 pink 15 white
CONT

If program execution has been halted by STOP, END or CTRL C, the
CONT command causes execution to resume at the next
instruction (like GOSUB)-~ not the next line number.
Nothing is cleared. CONT cannot be used if you have
a) modified, added or deleted a program line, or
b) gotten an error message since stopping execution.

CIRL C

Can be used to interrupt a RUNning program or a LISTing. It can
also be used to interrupt an INPUT if it is the first character
entered. The INPUT is not interrupted until the RETURN key is
pressed.

CTIRL X

Tells the APPLE to ignore the line currently being typed,
without deleting any previous line of the same line number. A
backslash (\) is displayed at the end of the line to be ignored.
DEL 23,56

Removes the specified range of lines from the program. In the
example, lines 23 through 56 will be DELeted from the program.
To DELete a single line, say line 35@, use the form DEL 35, 350
or simply type the line number and then press the RETURN key.
DIM NAMES(50)

When a DIM statement is executed, it sets aside space for the
specified array with subscripts ranging from @ through the given

115

subscript. In the example, NAMES(5@#) will be allotted 5§ + 1 or
51 strings of any length. If an array element is used in a
program before it is DIMensioned, a maximum subscript of 10 is
allotted for each dimension in the element’s subscript. Array
elements are set to zero when RUN or CLEAR is executed.

END

Causes a program to cease execution, and returns control to the
user. No message is printed.

ESC I or ESC. J or ESC K or ESC M

The Escape key may be used in conjunction with the letter keys I
or J or K or M to move the cursor without affecting the
characters moved over by the cursor. To move the cursor,

first press and then release the ESC key to enter edit mode.
Then press the appropriate letter key once for each move in the
desired direction. The REPT key can be used to speed the moves
by pressing the appropriate letter key and then pressing the
REPT key while holding down the letter key.

command nmoves Ccursor one space

ESC I up
ESC J left
ESC K right
ESC M down
FLASH

Sets the video mode to "flashing", so the output from the
computer is alternately shown on the TV screen in white
characters on black and then reversed to black characters on a
white background. Use NORMAL to return to a non-flashing
display of white letters on a black background.

FORW =1 TO 2§ ... NEXT W
FOR Q = 2 TO -3 STEP -2 ... NEXT Q
FOR Z = 5 TO 4 STEP 3 ... NEXT Z

Allows you to write a "loop" to perform any instructions between
the FOR command (the top of the loop) and the NEXT command (the
bottem of the loop) a specified number of times. In the first
exanple, the variable W counts how many times to do the

116

instructions; the instructions inside the loop will be executed
for W equal to 1, 2, 3, ...28, then the loop ends (with W = 21)
and the instruction after NEXT W is executed. The second
example illustrates how to indicate that the STEP size as you
count is to be different from 1. Checking takes place at the
end of the loop, so in the third example, the instructions
inside the loop are executed once.

GOSUB 250

Causes the program to branch to the indicated line (25¢ in the
example). When a RETURN statement is executed, the progranm
branches to the statement immediately following the most
recently executed GOSUB.

GOTO 25¢

Causes the program to branch to the indicated line (25¢ in the
example) .

GR

Sets low-resolution GRaphics mode (4@ by 4@) for the TV screen,
leaving four lines for text at the bottom. The screen is
cleared to black, the cursor is moved into the text window, and
COLOR is set to § (black).

HCOLOR = 4

Sets high-resolution graphics color to the color specified by
HCOLOR. Color names and their associated values are:

@ black!l 4 black?2
1 green 5 orange
2 violet 6 blue

3 whitel 7 white?2

On older Apples, prior to S/N 6(¢@, the colors in the second
column will look the same as those in the first column.

HGR

Only available in the firmware version of Applesoft. Sets
high-resolution graphics mode (28¢ by 168) for the screen,

117

leaving four lines for text at the bottom. The screen is
cleared to black, and page 1 of memory is displayed. Neither
HCOLOR nor text screen memory is affected when HGR is executed.
The cursor is not moved into the text window.

HGR 2

Sets full-screen high-resolution graphics mode (28 by 192).
The screen is cleared to black and page 2 of memory is
displayed. Text screen memory is mot affected.

HLIN 1¢, 2@ AT 3¢

Used to draw horizontal lines in low-resolution graphics mode,
using the color most recently specified by COLOR. The origin (x
= @ and y = @) for the system is the top leftmost dot of the
screen. In the example, the line is drawn from x = 1@ to x = 20
at y = 3@¥. Another way to say this: the line is drawn from the
dot (16,3@) through the dot (20,30).

HOME

Moves the cursor to the upper left screen position within the
text window, and clears all text in the window.

HPLOT 1@, 20
HPLOT 3¢,48 TO 50,64
HPLOT TO 7@, 8¢

Plots dots and lines in high-resolution graphics mode using the
most recently specified value of HCOLOR. The origin is the top
leftmost screen dot (x = @, y = #). The first example plots a
high-resolution dot at x = 1§, y = 2¢. The second example plots
a high-resolution line from the dot at x = 3¢, y = 40 to the dot
at x = 50, y = 6@. The third example plots a line from the last
dot plotted to the dot at x = 7¢, y = 8%, using the color of the
last dot plotted, not necessarily the most recent HCOLOR.

HTAB 23
Moves the cursor either left or right to the specified column (1

through 40) on the screem. In the example, the cursor will be
positioned in column 23.

118

IF AGE < 18 THEN A = @: B =1: C = 2
IF ANSS = "YES" THEN GOTO 1¢¢
IF N < MAX THEN GOTO 25

If the expression following IF evaluates as true (i.e.
non-zero), then the instruction(s) following THEN in the same
line will be executed. Otherwise, any instructions following
THEN are ignored, and execution passes to the instruction in the
next numbered line of the program. String expressions are
evaluated by alphabetic ranking.

INPUT A
INPUT "TYPE AGE THEN A COMMA THEN NAME. "; B, C$

In the first example, INPUT prints a question mark and waits for
the user to type a number, which will be assigned to the numeric
variable A. In the second example, INPUT prints the optional
string exactly as shown, then waits for the user to type a
number (which will be assigned to the variable B) then a comma,
then string input (which will be assigned to the string variable
C$). Multiple entries to INPUT may be separated by commas or
RETURNs .

INT (NUM)

Returns the largest integer less than or equal to the given
argument. In the example, if NUM is 2.389, then 2 will be
returned; if NUM is -45.123345 then -46 will be returned.
INVERSE

Sets the video mode so that the computer’s output prints as
black letters on a white background. Use NORMAL to return to
white letters on a black background.

LEFTS ("APPLESOFT", 5)

Returns the specified number of leftmost characters from the
string. In the example, APPLE (the 5 leftmost characters) will
be returned.

Left Arrow

See "Arrow Keys'.

119

LEN("AN APPLE A DAY")
LEN(BS)

Returns the number of characters in a string, between @ and 255.
In the first example, 14 will be returned.

A = 23.567
A$ = "DELICIOUS"

The variable name to the left of = is assigned the value of the
string or expression to the right of the = .

LIST
LIST 200, 3009
LIST 20¢-30¢¢

The first example causes the whole program to be displayed on
the TV screen; the second and third examples cause program lines
20¢ through 300¢ to be displayed. To list from the start of the
program through line 2¢@, use LIST -20¢ ; to list from line 20¢
to the end of the program, use LIST 2¢@- . LISTing is aborted
by CIRL C, and the CONT command cannot be used. To stop the
program temporarily at some point in the listing, use CTRL S.
Use CTRL S again to resume the listing.

LOAD

Reads an Applesoft program from cassette tape into the
computer’s memory. No prompt is given: the user must rewind the
tape and press "play" on the recorder before LOADing. A beep is
sounded when information is found on the tape being LOADed.

When LOADing is successfully completed, a second beep will sound
and the Applesoft prompt character (]) will return. Only RESET
can interrupt a LOAD.

LOAD DOW JONES

Attempts to find a program file with the name DOW JONES on the
diskette in the specified or default drive. If the program is
found, it will be LOADed into the Apple’s memory. LOAD erases
any program in the Apple before placing the new program in
memory. This command, when followed by a file name, is a DOS
command .

120

MIDS$("AN APPLE A DAY",4)
MIDS$(DAYS,4,9)

Returns the specified substring. In the first example, the
fourth through the last characters of the string will be
returned: APPLE A DAY. 1In the second example, the nine
characters beginning with the fourth character in the string
will be returned: APPLE A D

NEW

Deletes current program and all variables.

NEXT

See the discussion of FOR...TO...STEP.

NORMAL

Sets the video mode to the usual white letters on a black
background for both input and output.

NOTRACE

Turns off the TRACE mode. See TRACE.

PDL (1)

Returns the current value, a number from @ through 255, of the
indicated game control paddle. Game paddle numbers @ through 3
are valid.

PLOT 1¢, 20

In low-resolution graphics mode, places a dot at the specified
location. In the example, the dot will be at x = 1§, y = 20.
The color of the dot is determined by the most recent value of
COLOR, which is @ (black) if not previously specified.

121

PRINT
PRINT A$; "X = "; X

The first example causes a line feed and RETURN to be executed
on the screen. Items in a list to be PRINTed should be
separated by commas if each is to be displayed in a separate tab
field. The items should be separated by semi-colons if they are
to be printed right next to each other, without any intervening
space. If A$ contains "CORE" and X is 3, the second example
will cause

COREX = 3

to be printed.

REM THIS IS A REMARK

Allows text to be inserted into a program as remarks.

REPT

If you hold down the repeat key, labeled REPT, while pressing
any character key, the character will be repeated.

RETURN

Branches to the statement immediately following the most
recently executed GOSUB.

RIGHT$ ("SCRAPPLE",5)
RIGHTS$(S$,2)

Returns the specified number of rightmost characters from the

string. In the first example, APPLE (the 5 rightmost
characters) will be returned.

Right Arrow

See "Arrow Keys".

122

RND (5)

Returns a random real number greater than or equal to @ and less
than 1. RND(@) returns the most recently generated random
number. Each negative argument generates a particular random
number that is the same every time RND 'is used with that
argument, and subsequent RND’s with positive arguments will
always follow a particular, repeatable sequence. Every time RND
is used with any positive argument, a new random number from @
to 1 is generated, unless it is part of a sequence of random
numbers initiated by a negative argument.

RUN 500¢

Clears all variables, pointers, and stacks and begins execution
at the indicated line number (50¢¢ in the example). If no line
number is specified, execution begins at the lowest numbered
line in the program.

RUN ANNUITY

LOADs the file called ANNUITY from the specified or default
drive and then RUNs the program LOADed. When followed by a file
name, RUN is a DOS command, not an Applesoft command.

SAVE

Stores the program currently in memory, on cassete tape. No
prompt or signal is given. The user must press "record" and
"play" on the recorder before SAVE is executed. SAVE does not
check that the proper recorder buttons are pushed; "beeps"
signal the start and end of a recording.

SAVE ADDRESSES

SAVEs the file currently in memory. If no file called ADDRESSES
is found on the diskette in the specified or default drive, a
file is created on that diskette and the program currently in
memory is stored under the given file name. If the diskette
contains a file with the specified file name, and in the same
language, the original file’s contents are lost and the current
program is SAVEd in its place. No warning is given. SAVE, when
followed by a file name, is a DOS command.

123

STR$(12.45)

Returns a string that represents the value of the argument. In
the example, the string "12.45" is returned.

TAB(23)

Must be used in a PRINT statement; the argument must be between
¢ and 255 and enclosed in parentheses. For arguments 1 through
255, if the argument is greater than the value of the current
cursor position, then TAB moves the cursor to the specified
printing position, counting from the left edge of the current
cursor line. If the argument is less than the value of the
current cursor position, then the cursor is not moved. TAB({)
puts the cursor into position 256.

TEXT

Sets the screen to the usual non-graphics text mode, with 4¢
characters per line and 24 lines. Also resets the text window
to full screen.

TRACE

Causes the line number of each statement to be displayed on the
screen as it is executed. TRACE is not turned off by RUN,
CLEAR, NEW, DEL or RESET. NOTRACE turns off TRACE.

VAL (""-3. 7E4ASPLE"™)

Attempts to interpret a string, up to the first non-numeric
character, as a real or an integer, and returns the value of
that number. If no number occurs before the first non-numeric
character, a @ is returned. In the example, -37@¢@ is returned.

VLIN 10,20 AT 30
In low-resolution graphics mode, draws a vertical line in the
color indicated by the most recent COLOR statement. The line is

drawn in the column indicated by the third argument. In the
example, the line is drawn from y = 1 to y = 2 at x = 30.

124

VIAB(15)

Moves the cursor to the line on the screen specified by the
argument. The top line is line 1; the bottom line is line 24.

VIAB will move the cursor up or down but not left or right.

128

APPENDIX B: RESERVED WORDS
IN APPLESOFT

The following list contains all of the reserved words in
Applesoft BASIC. Although most of these words are not covered
elsewhere in this manual, the list is handy as a guide for
naming variables. Refer to the Applesoft BASIC Programming
Reference Manual to find out how to use more of these commands.

& GET NEW SAVE

GOSUB NEXT SCALE=
ABS GOTO NORMAL SCRN (
AND GR NOT SGN
ASC NOTRACE SHLOAD
AT HCOLOR= SIN
ATN HGR ON SPC(

HGR2 ONERR SPEED=
CALL HIMEM: OR SQR
CHRS$ HLIN STEP
CLEAR HOME PDL STOP
COLOR= HPLOT PEEK STORE
CONT HTAB PLOT STRS
Ccos POKE

IF POoP TAB (
DATA IN# POS TAN
DEF - INPUT PRINT TEXT
DEL INT PR# THEN
DIM INVERSE TO
DRAW READ TRACE

LEFTS RECALL
END LEN REM USR
EXP LET RESTORE

LIST RESUME VAL
FLASH LOAD RETURN VLIN
FN LOG RIGHTS VTAB
FOR LOMEM: RND
FRE ROT= WAIT

MIDS RUN

XPLOT
XDRAW

Applesoft "tokenizes" these reserved words: each word takes up
only one byte of program storage. All other characters in
program storage use up one byte of program storage each.

126

The ampersand (&) is intended for the computer’s internal use
only; it is not a proper Applesoft command. This symbol, when
executed as an instruction, causes an unconditional jump to
location $3F5.

XPLOT is a reserved word that does not correspond to a current
Applesoft command.

Some reserved words are recognized by Applesoft only in certain
contexts.

COLOR, HCOLOR, SCALE, SPEED, and ROT
parse as reserved words only if the next non-space
character is the replacement sign, = . This is of
little benefit in the case of COLOR and HCOLOR, as
the included reserved word OR prevents their use in
variable names anyway.

SCRN, SPC and TAB
parse as reserved words only if the next non-space
character is a left parenthesis, (.

HIMEM: must have its colon (:) to be parsed as a reserved
word.

LOMEM: also requires a colon (:) if it is to be parsed as
a reserved word.

ATN is parsed as reserved word only if there is no space
between the T and the N. If a space occurs between the
T and the N, the reserved word AT is parsed, instead
of ATN.

TO is parsed as a reserved word unless preceded by an
A and there is a space between the T and the 0. 1If a
space occurs between the T and the O, the reserved word
AT is parsed instead of TO.

Sometimes parentheses can be used to get around reserved words:

1¢¢ FOR A = LOFT OR CAT TO 15
LISTs as 1¢¢ FOR A = LOF TO RC AT TO 15
but 1¢¢ FOR A = (LOFT) OR (CAT) TO 15
LISTs as 1¢¢ FOR A = (LOFT) OR (C AT) TO 15

n

L}

127

APPENDIX C: EDITING FEATURES
The Left and Right Arrow Keys « —

The left-pointing arrow key, also called the backspace key,
moves the cursor back (left) one space, erasing the character it
passes over. If you haven’t pressed at the end of the
last line you typed, the backspace key only affects the
characters on that line.

Pressing the right-pointing arrow key, also referred to as the
retype key, makes the cursor move forward (right), retyping the
character it passes over. If you retype a line with the retype
key, then press , the Apple behaves as if you had
retyped the line by hand.

You can cause the cursor to move more quickly by pressing the
key while pressing one of the arrow keys.

Pure Cursor Moves

The , @, » , and [keys are used to move the
cursor without affecting any of the characters on the screen.
Inagine arrows drawn on the letter keys as illustrated:

[}
I
- -
:
M

Pressing gets you into edit mode. Once you are in edit
mode, pressing one of the above-mentioned letter keys will cause
the cursor to move one character in the direction of the
corresponding arrow. You can use these keys to move the cursor
anywhere on the screen.

TFor faster cursor motion, hold down one of these keys and then
hold down the key. The cursor will zip along while both
keys are held down. If the cursor reaches the top of the

screen, it will stop. If the cursor reaches the bottom of the

128

screen, it will stop, and the lines will start to scroll upward.

If it reaches the right edge, the cursor will disappear and
reappear at the left edge, but on the next line. At the left
edge, it will reappear on the right, one line up. To return to
normal mode, press the space bar once.

Deleting Program Lines

An easy way to delete a program line is simply to type the line
number of the line you wish to delete and press . If
you have more than one line to delete, you may wish to utilize
the DELete command. To delete, for instance, lines 1¢¢ through
200 you would type

DEL 1¢@, 200

All program lines from 10@ to 2¢¢ inclusive, should then be
deleted.

Typing

-~

will delete the line you are currently typing. This is useful
when you realize you have made a mistake before you have pressed

Clearing the Screen

The following commands affect only what you see on the screen,
not what is stored in the Apples memory. Pressing the key
once puts you in edit mode.

To clear the screen, type [followed by an "at" sign.

o0

The cursor will appear at the top left-hand corner of the screen
without the prompt. The prompt character will appear when you
press LD .

If you are already in edit mode you can clear the screen by

simply typing an "at" sign (@). The Apple will return you to
normal mode.

129

The HOME command will also clear the screen. Simply type
HOME

and the cursor will "home" to the top left-hand corner of the
screen.

It is also possible to clear only portions of the screen. To
clear from a point on the screen to the end of the screen, get
into edit mode by pressing . Then use the pure cursor move
features to move the cursor to the first character you wish to
clear. Press the key, and all the characters from that
point to the end of the screen will be cleared. To clear
characters to the end of a line, you must first be in edit mode.
Then move the cursor to the first character to be cleared, and
press [. In both cases, the Apple will return to normal mode
after the command is executed.

Summary of Edit Features

Enter edit mode Press [&U

Exit edit mode Press space bar
Move cursor Press , . n or n
Delete a character Press

Retype a character Press

Clear from the cursor
to the end of a line Press

Clear from the cursor
to the end of the screen Press

0 60806

"
@
S

.)
Clear the entire screen Press . then and

Stop listing Press and B
Resume listing Press and a

130

APPENDIX D: FIRMWARE APPLESOFT VERSUS
DISKETTE OR CASSETTE APPLESOFT

infroduction

You do not need to read this appendix at all unless you are
using one of the following:

1. the plug-in Applesoft II Firmware Card
2. Applesoft loaded from cassette tape

3. Applesoft loaded from diskette

Some of the material in this appendix may seem highly technical,
if this is your first experience with computers. Don’t worry if
you do not understand everything here, at first. Just read the

appropriate parts, looking for information which might help you.
At a later time, when you know more about your computer, you may
wish to re-read this appendix for more detailed facts.

This appendix will use some special words which may be
unfamiliar to you. Many of them describe the Apple’s memory,
which is used in a surprising number of different ways:

l. To store the diskette or the cassette version of the
Applesoft programming language.

2. To store the instructions that make up your program.

3. To store your program’s variables, strings, and
intermediate and final results.

4. To store various information which the Apple itself
needs, about the system, your program, and where
different things are stored in memory.

5. To create the text and low-resolution graphics which
normally show on your TV screen.

6. To create the high-resolution graphics that can be
shown on your TV screen.

Each of these activities, in general, occupies a different
portion of the Apple’s memory. Information is placed in various
memory ''pigeonholes"”, called memory locations. A block of

1924 memory locations is sometimes called 1K of memory. Each
memory location has an identifying address, a number which

lets the Apple find that location, and the item of information
stored there, again. These items of information, which you
rarely see in their raw, machine-language form, are called
bytes of information. Each byte of information occupies one
menory location.

131

The portion of Apple’s memory that is used by a particular
activity can be described in terms of the memory locations
used, usually specified as a range of memory addresses. If a
certain range of memory locations is being used to store your
program, for instance, those same memory locations must not be
used to create a high-resolution graphics display, or your
program will be lost.

In Applesoft BASIC, memory addresses and other numbers are
expressed in the usual decimal form. The computer itself uses
numbers in a different form called hexadecimal. To aid
advanced programmers, memory addresses are sometimes given both
in the normal decimal form and in the hexadecimal form.
Hexadecimal numbers are usually preceded by a dollar sign (§)
and may safely be ignored.

General Discussion

Apple Computer Inc. offers two versions of the BASIC programming
language. Integer BASIC, described in the Apple II BASIC
Programming Manual, is a very fast BASIC suited for many
applications, especially in education, game playing, and
graphics. The other version of BASIC is called "Applesoft'" and
is better suited for most business and scientific applications.

Applesoft BASIC is available in two versions: firmware

Applesoft and diskette or cassette Applesoft. Firmware
Applesoft comes with Applesoft in ROM (permanent, Read-Only
Memory). The Applesoft ROM chips may be installed in sockets D{
through F@ on the Apple’s main printed circuit board, or they
may be on a plug-in Applesoft II Firmware Card (Apple Part
Number A2B@@@9X). Firmware Applesoft is instantly available
when you turn your Apple on or when you type the disk command
FP. This saves some time over loading the language from
diskette at every use, and saves even more time over loading the
language from cassette tape. Aside from this convenience,
having Applesoft in ROM frees about 10K of Apple’s memory for
the use of programs.

The main body of this manual assumes your Apple has firmware
Applesoft installed in sockets D@ through F@# on the Apple’s main
printed circuit board. PART 1 of this appendix gives more
details about installing and using the plug-in Applesoft II
Firmware Card.

132

If you are using the diskette or the cassette version of
Applesoft, the

Pl

symbol points out places in this manual where your Applesoft
differs from firmware Applesoft. PART 2 of this appendix
discusses diskette Applesoft in more detail, and PART 3 gives
more details about cassette Applesoft. PART 4 of this appendix
susmmarizes special instructions and notes on the differences
between diskette or cassette Applesoft and the firmware
Applesoft described elsewhere in this manual. Finally, PART 5
of this appendix gives more technical information for the use of
more advanced programmers who need to know how the Apple’s
memory is used by Applesoft.

An Important Note
One of the functions of the prompt character, besides PROMPTing
you for input to the computer, is to identify at a glance which
language the computer is programmed to respond to at that time.
Here -are the prompt characters you are likely to see:

* for the Monitor program (when you type CALL =~151)

> for Apple Integer BASIC

] for Applesoft floating-point BASIC.

By simply looking at this prompt character, you can easily tell
(if you forget) which language the computer is in.

PART 1. THE APPLESOFT |I FIRMWARE CARD
installation

The Applesoft II Firmware Card simply plugs into a socket inside
the Apple. Care must be exercised, however, so follow these
instructions exactly:

1) Turn off the Apple’s power switch: this is very
important to prevent damaging the computer.

133

2) Remove the cover from the Apple. This is done by pulling up
on the cover at the rear edge (the edge farthest from the
keyboard) until the two corner fasteners pop apart. Do not
continue to lift the rear edge, but slide the cover backward
until it comes free.

3) Inside the Apple, across the rear of the main circuit board,
there is a row of eight long, narrow sockets called "slots."
The leftmost one (looking at the computer from the keyboard end)
is slot #@; the rightmost one is slot #7. Hold the Applesoft II
Firmware Card so that its switch is toward the back of the
computer; insert the "fingers" portion of the card into the
leftmost slot, slot #@. The fingers will enter the slot with
some friction, and will then seat firmly. The Applesoft II
Firmware Card must be placed in slot #0@.

4) The switch on the back of the Applesoft II Firmware Card
should protrude part way through the slot on the back of the
Apple.

5) Replace the Apple’s cover: first slide the front edge into
place, then press down on the two rear corners until they pop
into place.

7) Now turn on the Apple.

Using the Applesoft Il Firmware Card

With the Applesoft II Firmware Card’s switch in the downward
position, the Apple will begin operating in Integer BASIC when
you turn the computer on. You will see the prompt character > ,
which indicates Integer BASIC.

With the switch in the upward position, the Apple will begin
running in Applesoft BASIC, instead of Integer BASIC, when you
turn the computer on. The prompt character] tells you that
you are in Applesoft.

When using the Disk Operating System (DOS), the computer will
automatically choose Integer BASIC or Applesoft, as required.
It does not matter in which position the switch is set on the
Applesoft II Firmware Card.

PART 2: DISKETTE APPLESOFT

With each Disk II, Applesoft II BASIC is provided on the Integer
BASIC System Master Diskette, in a program called APPLESOFT. In

134

addition to the 2K bytes used by the Apple, and the 1¢K bytes
used by Applesoft BASIC loaded from diskette, the Disk Operating
System (DOS) occupies another 1¢.5K of memory. Therefore, your
computer must contain at least 24K bytes of memory to use the
diskette version of Applesoft BASIC.

To use diskette Applesoft, the disk must be booted and at least
one disk drive must contain a diskette which has the program
APPLESOFT on it (such as the System Master Diskette). Do not
use the command RUN APPLESOFT. This command does not properly
initialize the language: Applesoft will look as though it is
running correctly, but you will be in trouble as soon as you
press the RESET key or type a DOS command. Instead, use the DOS
command

FP

(for Floating Point BASIC).
When you issue the DOS command
FP

your computer will attempt to load the APPLESOFT language
progran from the diskette in the default (last used) disk
drive. If the program APPLESOFT is not on that diskette, the

message

LANGUAGE NOT AVAILABLE

is given. In that case, you have two choices. You may place in
that drive a diskette with the APPLESOFT program on it, and type
the

FP

command again. Or, if you know that a different drive

contains a diskette with APPLESOFT on it, you may issue the FP
command with slot and drive parameters. For example, to load
Applesoft from the diskette in drive 2 connected to a disk
controller card in slot 6, you would type

FP, S6, D2
(see your DOS manual).
When you LOAD or RUN a diskette program written in Applesoft,

DOS automatically switches to the correct language. If this
necessitates a change to Applesoft, DOS will attempt to find the

135

APPLESOFT program on the diskette 1n the ailsk drive specilried by
the LOAD or RUN command, or on the diskette in the default disk
drive if none is specified. You may, of course, use the FP
command to change languages yourself, as described above.

PART 3: CASSETTE TAPE APPLESOFT

Applesoft II BASIC is provided on cassette tape with each Apple
IT. If your system includes firmware Applesoft or a disk drive,
you will not need to use the cassette tape version of Applesofte.
Applesoft BASIC loaded from cassette tape occupies approximately
1¢K bytes of memory, and the Apple uses another 2K bytes for
text screens, etc. Thus, your computer must contain at least
16K bytes of memory to use the cassette version of Applesoft
BASIC.

Getting Started With Cassette Tape Applesoft

Use the following procedure to load Applesoft from your cassette
tape unit:

1) Start up Integer BASIC by turning on the computer. You will
know you are in Integer BASIC when you see the prompt character
> displayed on the TV screen, followed by the blinking square
"cursor."

2) Place the Applesoft cassette tape (Part Number A2T@@¢4) in
your cassette recorder and rewind the tape to the beginning.

3) Type LOAD

1

4) Press the recorder’s "play" lever to start the tape playing.
5) Back at the Apple keyboard, press the key marked CEIN .
When you do this the blinking cursor will disappear. After 5 to
2¢) seconds the Apple will beep, to signal that the tape’s
information has started to go into the computer. After about
1-1/2 minutes, there will be another beep and the prompt
character > followed by a cursor will reappear.

6) Stop the tape recorder and rewind the tape. APPLESOFT is
now in the computer.

7) Type RUN and press the key marked RETURN. The screen will
display the copyright notice for APPLESOFT II and APPLESOFT’s
prompt character, J].

136

=

Iyping [N @ from the Monitor program (prompt character *)
will tramsfer you to Integer BASIC; this will erase Applesoft.

PART 4: DIFFERENCES BETWEEN DISKETTE OR
CASSETTE APPLESOFT AND
FIRMWARE APPLESOFT

Applesoft on diskette or on cassette tape (Part Number A2T(@@4)
does not work exactly the same as does the firmware version of
Applesoft that resides in ROM on the Apple’s main printed
circuit board (sockets D@ through F@) or on a plug-in Applesoft
I1I Firmware Card (Part Number A2B@@@9X). Most of this manual
describes the firmware version of Applesoft. The following
comments point out how diskette or cassette Applesoft differs
from firmware Applesoft.

Firmware Applesoft does not occupy any space in the Apple’s
memory, and therefore may be used with Apples of almost any size
Benory .

Diskette Applesoft occupies approximately 1@K bytes of memory,
the Apple uses another 2K bytes for text screens and other
system needs, and the Disk Operating System (DOS) occupies
another 1¥.5K bytes. Thus, diskette Applesoft cannot be used in
Apples with less that 24K bytes of memory. With diskette
Applesoft loaded into the Apple, the lowest memory location
available to the user is 12291. See the memory map in PART 5 of
this appendix.

Cassette Applesoft occupies approximately 10K bytes of memory
and the Apple uses another 2K bytes for text screens and other
system needs. Thus, cassette Applesoft cannot be used in Apples
with less than 16K of memory. With cassette Applesoft loaded
into the Apple, the lowest memory location available to the user
is 12291. See the memory map in PART 5 of this appendix.

]
HGR is not available in diskette or cassette Applesoft. The
HGR command clears '"page 1" of graphics memory (the portion of

Apple’s memory from location 8192 to location 16383) for
high-resolution graphics. Since diskette or cassette Applesoft

137

partly occupies this portion of memory, attempting to use HGR
will erase Applesoft, and your program will be lost. The HGR
command can only be used with firmware Applesoft.

The HGR2 command uses ''page 2'" of graphics memory (the portion
of Apple’s memory from location 16384 to location 24575). HGR2
can be used both in the firmware and in the cassette version of
Applesoft, but is only available if your Apple contains at least
24K of memory. Therefore, in a system with less than 24K of
memory, cassette Applesoft does not offer any form of
high-resolution graphics.

l:10

In diskette Applesoft, and in firmware Applesoft used with DOS,
the HGR2 command may cause trouble when it clears "page 2" of
graphics memory (location 16384 to location 24575). On systems
with less than 36K of memory, this will erase a large portion of
DOS. Therefore, in a system with less than 36K of memory,

diskette Applesoft (and firmware Applesoft used with DOS) does
not offer any form of high-resolution graphics.

The command
POKE -16301,0

is used in Applesoft to convert any full-screen graphics mode to
mixed graphics-plus—text mode. When issued after HGR2, however,
the four lines of text are taken from page 2 of text memory,

and not from the usual page 1l of text memory that is displayed
on the text screen. In the diskette or the cassette version of
Applesoft, Applesoft itself occupies page 2 of text memory, so
that mixed high-resolution graphics-plus-text is not available.

In diskette or cassette Applesoft, use CALL 11246 (instead of
the CALL 6245@ used in firmware Applesoft) to clear the HGR2
screen to black. Use CALL 1125 (instead of firmware
Applesoft’s CALL 62454) to clear the HGR2 screen to the HCOLOR
last HPLOTted.

‘E:%)
If executed before you issue the HGR2 command the first

time, these CALLs may clear 'page 1" of graphics memory, erasing
Applesoft.

138

The Applesoft command HPLOT can be used in this form if you
are using firmware Applesoft:

HPLOT X1,Yl TO X2,Y2 TO X3,Y3 TO X4,Y4

If you are using diskette or cassette Applesoft, you must change
such an instruction to this form:

HPLOT X1,Yl TO X2,Y2

HPLOT TO X3,Y3
HPLOT TO X&4,Yé4

139

PART 5: MEMORY LOCATIONS USED BY DOS
AND BY APPLESOFT BASIC

Highest RAM
memory address:
49151 (SBFFF)
on a 48K system
[Note 1]

24576
(56¢09)

16384
($4000)

8192
($2000)

2048
($0899)

Lowest RAM
memory address:

0999 (59999)

140

Apple’s Memory

Without DOS,

B Applesoft
I sets HIMEM here
19752 Disk [Note 1]
($2A00) Operating
bytes System
i (1f booted)
Booting DOS
1 sets HIMEM here
1 [Note 1]
Applesoft strings
start at HIMEM
and build down
High-resolution graphics,
Page 2
[Note 4)
N Diskette
e or cassette
High-resolution graphics, Applesoft

""" Page 1 == == ===1¥-gets LOMEM at
[Note 3] A 12291 ($3993)
> : [Note 2]
]
1
Diskette
________ _ Oor cassette
K~ Applesoft
Variables 1 (1f used)
start at I occupies
LOMEM and : this space
build up 1 [Note 3]
---------]
Applesoft A !
program lines : :
push LOMEM up , I Firmware
o [[e Applesoft
i [~ sets LOMEM here
BASIC System use: [Note 2]

low-resolution graphics
and text screen, etc.

P

Note l. HIMEM is the address of the highest memory location
available to an Applesoft program. If your system is in
Applesoft, the value of HIMEM can be found (low byte first, then

high byte) in decimal locations 115 and 116 ($73-$74,
hexadecimal). To see the current value of HIMEM, type

PRINT PEEK(115) + PEEK(116) * 256

Consult the following table for the value of HIMEM set by
booting DOS, for systems with various amounts of memory.
Increasing MAXFILES will move HIMEM down an additional 595 bytes
for each file buffer added. For the locations of other
Applesoft program pointers, consult your Applesoft II BASIC
Programming Reference Manual, Appendix I.

HIMEM Value Set By Booting DOS

System Highest RAM address HIMEM: set by DOS boot
size Decimal Hexadecimal Decimal Hexadecimal

16K 16383 $3FFF 5632 S16¢¢

20K 20479 $4FFF 9728 $260¢

24K 24575 $5FFF 13824 $3604¢

32K 32767 $7FFF 22@16 $5600

36K 36863 $8FFF 26112 36600

48K 49151 $BFFF 38409 $9600

The negative equivalent of any positive decimal address n
is (n - 65536).

Note 2. LOMEM is the address of the lowest memory location
available to an Applesoft program. In Applesoft, the value of
LOMEM can be found (low byte first, then high byte) in decimal
locations 1f5 and 106 ($69-$6A, hexadecimal). To see the
current value of LOMEM, type

PRINT PEEK(1(5) + PEEK(1¢6) * 256

Applesoft automatically sets LOMEM just after the last line of
the current stored program, and the first variable starts at
LOMEM.

Note 3. Using high-resolution graphics Page 1 (with HGR) erases
the contents of memory locations 8192 through 16383. If you are
using firmware Applesoft with DOS, an attempt to use high-
resolution graphics Page 1 will erase part of DOS unless DOS

141

sets HIMEM to a value greater than 16383. This means that you
cannot use DOS and high-resolution graphics at the same time,
unless your system contains at least 32K of memory.

If you are using diskette or cassette Applesoft, an attempt to
use high-resolution graphics Page 1 will always erase part of
Applesoft. With diskette or cassette Applesoft, you may use
high-resolution graphics Page 2, only. However, see Note 4.

Note 4. Using high-resolution graphics Page 2 (with HGR2)
erases the contents of memory locations 16384 through 24575. 1If
you are using DOS, an attempt to use high-resolution graphics
Page 2 may erase part of DOS unless DOS sets HIMEM to a value
greater than 24575. This means that you cannot use DOS and Page
2 high-resolution graphics at the same time, unless your system
contains at least 36K of memory.

142

APPENDIX E: ERROR MESSAGES

All of the error messages that can be generated in Applesoft
BASIC are listed here along with their descriptions. See the
Applesoft BASIC Programming Reference Manual for more

information on the error messages not covered in this manual.

After an error occurs, Applesoft BASIC returns to command level
as indicated by the] prompt character and a blinking cursor.
Variahle values and the program text remain intact, but the
program cannot be CONTinued and all GOSUB and FOR loop counters
are set to §.

When an error occurs in an immediate-execution statement, no
line number is printed.

Format of error messages:
Immediate-execution Statement ?XX ERROR
Deferred-execution Statement ?XX ERROR IN YY

In both of the above examples, "XX" is the name of the specific

error. "YY" is the line number of the deferred-execution

statement where the error occurred. Errors in a
deferred-execution statement are not detected until that
statement is executed.

The following are the possible error codes and their meanings.

?CAN‘T CONTINUE ERROR
Attempt to continue a program when none existed, or after amn

error occurred, or after a line was deleted from or added to a
program.

?DIVISION BY ZERO ERROR

Dividing by zero is an error.

?FORMULA TOO COMPLEX ERROR

More than two statements of the form IF "XX" THEN were executed.

143

?ILLEGAL DIRECT ERROR

You cannot use an INPUT, DEF FN, GET or DATA statement as an
immediate-execution command.

?ILLEGAL QUANTITY ERROR

The parameter passed to a math or string function was out of
range. ILLEGAL QUANTITY errors can occur due to:
a) a negative array SUBSCRIPT (e.g., A(-1) = @)
b) wusing LOG with a negative or zero argument
c) wusing SQR with a negative argument
d) A "~ B with A negative and B not an integer
e) use of MID$, LEFT$, RIGHTS, WAIT, PEEK, POKE, TAB, SPC,
ON...GOTO, or any of the graphics functions with an
improper argument.

?NEXT WITHOUT FOR ERROR

The variable in a NEXT statement did not correspond to the
variable in a FOR statement which was still in effect, or a
nameless NEXT did correspond to any FOR which was still in
effect.

?0UT OF DATA ERROR

A READ statement was executed but all of the DATA statements in
the program had already been read. The program tried to read
too much data or insufficient data was included in the program.

?0UT OF MEMORY ERROR

Any of the following can cause this error: program too large;
too many variables; FOR loops nested more than 1§ levels deep;
GOSUB’s nested more than 24 levels deep; too complicated an
expression; parentheses nested more than 36 levels deep; attempt
to set LOMEM: too high; attempt to set LOMEM: lower than present
value; attempt to set HIMEM: too low.

?0VERFLOW ERROR
The result of a calculation was too large to be represented in
Applesoft BASIC’s number format. If an underflow occurs, zero

is given as the result and execution continues without any error
message being printed.

144

?7REDIM’D ARRAY ERROR

After an array was dimensioned, another dimension statement for
the same array was encountered. This error often occurs if an
array has been given the default dimension 1¢¥ because a
statement like A(I) = 3 is followed later in the program by a
DIM A(1¢¢). This error message can prove useful if you wish to
discover on what program line a certain array was dimensioned:
just insert a dimension statement for that array in the first
line, RUN the program, and Applesoft will tell you where the
original dimension statement is.

?RETURN WITHOUT GOSUB ERROR

A RETURN statement was encountered without a corresponding GOSUB
statement being executed.

?STRING TOO LONG ERROR

Attempt was made by use of the concatenation operator to create
a string more than 255 characters long.

?7BAD SUBSCRIPT ERROR

An attempt was made to reference an array element which is

outside the dimensions of the array. This error can occur if

the wrong number of dimensions are used in an array reference;
for instance, LET A(ll) = Z when A has been dimensioned using
DIM A(2).

?SYNTAX ERROR

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

?TYPE MISMATCH ERROR

The left-hand side of an assignment statement was a numeric
variable and the right-hand side was a string, or vice versaj; or

a function which expected a string argument was given a numeric
one or vice versa.

145

?UNDEF ‘D STATEMENT ERROR
An attempt was made to GOTO, GOSUB or THEN to a statement line

number which does not exist.

?UNDEF’D FUNCTION ERROR

Reference was made to a user—defined function which had never
been defined.

146

APPENDIX F: THE OLD MONITOR ROM

Most of this manual assumes that your Apple contains the
Autostart ROM, which instantly starts your Apple running in
BASIC when you turn on the Apple’s power switch. When you turn

en your Apple, if it clears its own screen and prints

APPLE 11

at the top (and boots your disk, if you have one) then your
Apple contains the usual Autostart ROM.

©

On some older Apples, the key must be pressed before the
screen is cleared and the title APPLE][appears.

However, some Apples use a Monitor ROM which works somewhat
differently. When you turn on your Apple, if it displays lots
of random characters on the screen, and these characters are not
cleared away, then your Apple contains the "0ld Monitor ROM",
and you should read this section.

Using the Old Monitor ROM

Each time you turn on your Apple, you will see an asterisk (*)
prompt character at the screen’s lower left, followed by the
flashing cursor. This indicates that you are in the Monitor
program, which advanced programmers use when working in "machine
language". To begin running in BASIC after turning on your
Apple, you must always go through the following magic sequence:

1. Press the key (at the upper right cornmer of
the Apple’s keyboard).

2. Hold down the key (at the middle left on the
keyboard) and continue to hold it down while you
type the letter @ .

3. Press the key (at the middle right on the
keyboard) .

In key-symbol notation, the sequence to begin running in BASIC
looks like this:

CTAL

147

Recovering from Accidental RESETs

If your Apple contains the Autostart ROM, pressing the
key causes no problems: you are immediately returned to the
BASIC you were just using.

With the 0ld Monitor ROM, however, accidentally pressing the
key will suddenly throw you into the Monitor program.
You will see the asterisk (*) prompt character at the screen’s
lower left, followed by the flashing cursor. To return to BASIC
without losing any stored program, you must do one of the

following:

1. Without the Disk
If you are using Integer BASIC or firmware Applesoft (see

Appendix D), you can return to your program after an accidental
or intentional press of the key by typing

CTRL
RETURN

This will return you to the BASIC you were using when you
pressed the key, without losing your program.

If you are using cassette Applesoft, after pressing the
key you must type

@
2. With the Disk

If you have booted DOS, no matter what version of Applesoft you
are using, after pressing the key you must type

#

This will return you to DOS and the BASIC you were using when
you pressed the key, without losing your program.

=

If you are using diskette or cassette Applesoft,

RESET RETURN
. -

148

will attempt to reinstate Integer BASIC as your programming
language. This may erase Applesoft and any program in memory,
and the uninitialized Integer BASIC will not work correctly.

3. With the Applesoft II BASIC Programming
Reference Manual

The Applesoft II BASIC Programming Reference Manual contains
much more detailed information about Applesoft than this
teaching manual contains. The Applesoft II BASIC Programming
Reference Manual, however, was written assuming your system
contains the Applesoft II Firmware Card (see Appendix D in the
manual you are now reading), and no disk. Each place where the
Applesoft II BASIC Programming Reference Manual says to use

CTRL
RESET RN
. e

diskette Applesoft users should use

#*

and cassette Applesoft users should use

instead. Where the Applesoft II BASIC Programming Reference
Manual says to use

CTRL
RESET n RETURN

diskette Applesoft users can do the same, but they will then be

in Integer BASIC, and will have to re-boot the disk (PR#6) and
then reload Applesoft from diskette (FP). Cassette Applesoft

users will also find themselves in Integer BASIC, and will have

to reload Applesoft from cassette tape.

149

150

INDEX TO THE APPLESOFT TUTORIAL

NOTE:

The page numbers in parentheses refer to the

Applesoft II BASIC Programming Reference Manual.

A

addition 23, 39-42
address 131-132 (4@, 41, 43-45)
AND 57-59 (33, 36, 144)
Apple Disk II Disk Drive: see disk
drive
Applesoft BASIC 2
command summary 114-125
error messages 143-146
loading from cassette 136
(1¢6-1¢9)
loading from diskette 134-136
on cassette 2, 92, 93, 96, 131-
133, 136-142, 148-149
(196, 1968, 1¢9)
on diskette 2, 92, 93, 96, 131-
133, 134-142, 148-149
on firmware card 6, 117, 131-
134, 137-142, 148-149
(44, 106, 107, 1¢9)
Applesoft II BASIC Programming
Reference Manual 26, 97, 101,
111, 114, 126, 141, 143, 149
Applesoft II Firmware Card 6,
117, 131-134, 137-142, 148-149
(196, 167, 1¢9)
arguments 35

arithmetic 23-24, 59 (33, 36)
arithmetic operators 23-24, 59
(33, 36)
precedence of 39-42

arrays 1¢8-111 (14, 18, 32, 58)
error messages 11¢-111

arrow keys 11, 27-29, 53, 114,
128 (54, 55, 11¢-114, 15@)

arrow, upward pointing 24

assertions, true and false 55-58
9)

Autostart ROM 2, 147-148

backspace key 27-29, 53, 114, 128

beep 10
generating 78-81
with LOAD and SAVE 12-13, 62,
123, 136

BELL 8, 1¢
blinking square: see cursor
booting DOS: see DOS

bouncing ball 74-79
branching
FOR/NEXT 64-67, 116-117, 143,

144 (11-14, 20, 78, 79, 152)
GOSUB/RETURN 87-91, 117, 143,
145, 146
(15, 16, 79, 8¢, 119, 153)
GOTO 5@, 59, 63-64, 117, 146
(76, 81, 153)
IF/THEN 59-6¢, 119, 143, 146
(9-1¢, 76, 154)
bytes 131, 135, 136, 137-138

C

cable 3, 5
CALL =151 114, 133
cassette Applesoft: see Applesoft
BASIC
CASSETTE IN jack 5
cassette recorder
plugging in 5
setting the volume
CASSETTE OUT jack 5
CATALOG 16, 6¢, 114
change program line: see editing
CLEAR 1¢4, 114 (8, 52, 15@)
clearing the screen 9, 12, 33,
45, 118, 129-13¢
colon 81 (16, 125)
COLOR= 3¢-34, 115 (5, 11, 24,
25, 85, 15@)
color (23-27, 85, 89, 131-134)
high-resolution charts 92, 117
low-resolution charts 18, 115
names and numbers 18, 92, 115,
117
setting TV color
COLOR DEMOSOFT
on diskette 16, 18, 3@
on cassette tape 12, 18, 3¢
columns
tab fields: see tab
with graphics 29, 62-63
comma 68-69 (6, 7¢)

11-14

18-19

1561

commands 114-125 (2, 122-123)
concatenation
strings 1005, 145 (21, 71)
CONT 51, 115, 143
(39, 4@, 67, 151)
Control: see CTRL key
co-ordinates
high-resolution 91, 95
low-resolution 29, 64, 71,
85-86
CTRL B 137, 147, 149
CTRL C 17, 5@-51, 115, 12¢, 148-
149 (7, 16, 35, 39, 4@, 1¢7-
109, 151)
CTRL key 10 (35, 144)
CIRL G 10
CTRL S 75, 12¢
CTRL X 54, 115, 129
(55, 66, 69, 151)
controller card 3, 16, 135
cursor 5, 1¢, 11, 13, 16, 22, 136
cursor position 1¢, 11, 27-29,
52-53, 116, 124
(5¢-52, 54, 55, 11¢-114, 131)

D

debug mode: see TRACE
decimal places 25 (18, 22)
deferred execution 44-45, 48, 143
(2, 36, 134)
DEL 49, 65, 115, 129 (49, 151)
delay loop 82 (27, 41-43, 97)
delete 49, 54, 65, 115, 129
(3, 38, 49)
DIM 1¢8-1¢9, 115-116, 145
(14, 58, 152)
dimensions: see DIM
Disk II disk drive: see disk drive
disk drive 3, 4, 6, 15-16,
134-136
diskette Applesoft: see Applesoft
BASIC
Disk Operating System: see DOS
division 24, 39-42
(2, 18, 33, 36)
DOS (Disk Operating System)
booting 15-16
commands 16, 114, 12¢, 123, 135
memory requirements 135, 137-
138, 14¢-142
recovering from accidental
RESETs 148-149

152

EAR or EARPHONE jack 5
edit mode 52, 128
editing (54, 55, 11(-114)
arrow keys 27-29, 53, 114, 128
changing program lines 48-49,
(54, 11¢-114)
CTRL X 54, 115, 129
DEL 49, 65, 115, 129
pure cursor moves (ESC with I, J,
K, and M) 52-53, 116, 128-129
element
arrays 108
(14, 32, 58, 62-64)
END 88, 9¢, 116
(16, 39, 118, 152)
equal sign
as a replacement sign 36-39
(12)
in an assertion 55 (55)
erasing
programs 44-46, 121 (3, 38)
the screen 9, 12, 33, 45,
129-13¢ (52)
ERR or ERRERR 12
error messages 143-146
(115-117, 167)
ESC key 8-9, 52-53, 128-13¢ (35)
execution 44-45, 48-49, 143
(2, 36, 38-45)
exponentation 24, 39-42
(4, 5, 18, 31-33)

F

firmware Applesoft 6, 117, 131-

134, 137-142, 148-149
(1¢6, 147, 1¢9)

FLASH 68, 116 (53, 152)

FOR/NEXT 64-67, 116-117, 143, 144
(11-14, 2¢, 78, 79, 152)

format: see number format

function 35 (73, 102-1¢4)

G

game controls 3, 4, 2¢, 34, 48-51,
121 (9¢, 134, 135)

GAME 1/0 socket &

GOSUB/RETURN 87-91, 117, 143, 145,
146 (15, 16, 79, 8@, 119, 153)

GOTO 5@, 59, 62-64, 117, 146
(7, 76, 81, 153)
GR 3¢, 33, 62, 86, 117
(5, 11, 23-25, 84, 131-134, 153)
graphics
high-resolution 91-97, 137-142
(25-27, 87-1¢¢, 126, 131-134)
low-resolution 29-34, 60, 62-
67, 74-79, 85-87, 89-91
(5, 1¢, 23-25, 83-87,
131-134)
greater than [>] 55, 59

HCOLOR 93-96, 117
(26, 27, 89, 134, 153)

hexadecimal 132

HGR 92, 117-118, 137
87, 89, 98, 99, 153)

HGR2 118, 138, 142
(25, 84, 88, 89, 99,153)

high-resolution graphics
(25-27, 87-10¢, 131-134)
memory map 14@-142
memory range 14@-142 (126)
Page 2 118, 138, 142

HIMEM: 14¢-142, 144 (41, 43, 44,
99, 10¢, 123, 127, 154)

HLIN 33, 118 (6, 25, 86, 154)

horizontal lines, plotting: see
HLIN

HOME 45, 118, 13¢
(11, 48, 52, 154)

HPLOT 93-96, 118, 139
98, 131-134, 154)

HTAB 7¢-71, 118 (27, 5@, 51, 154)

I key (with ESC): see editing

IF/THEN 59-6¢, 119, 143, 146
(9-1¢, 76, 154)

ILLEGAL QUANTITY ERROR 32, 76,
144

immediate execution 44-45, 143
(2, 36)

IN USE light 6, 15

incrementing in loops: see
looping

INPUT 75-77, 1¢2, 119
(7, 9, 66, 67, 141, 154)

(25, 26, 84,

91-97

(26, 89,

INT 83, 119 (19, 1@2, 155)
integer (2, 4)
INT function: see INT
rounding 25 (18, 31)
variables 36-38 (18, 31, 145)
Integer BASIC 2, 132, 134, 136,
148-149
interrupting execution: see CTRL C
and RESET
INVERSE 68, 119 (53, 155)

J

J key (with ESC): see editing

K

K key (with ESC): see editing
keyboard 7-11 (13¢)
keyboard notation 9

L

LEFTS$ 1¢1-1¢2, 119, 144
(26, 6@, 124, 155)
Left-arrow key 11, 27-29, 53, 114,
128 (54, 55, 67, 11¢-114, 150¢)
LEN 1¢@-1¢1, 12¢ (19, 59, 155)
less than [<] 55, 59
lines
in a program 45-47, 81
(2, 3, 36, 118, 141)
in graphics mode 32-34, 118,
124 (86, 89, 92-97)
line number 45-47
(2, 3, 35, 49, 145)
LIST 44-46, 51, 120
(3, 4, 48, 155)
Little Brick Out 19-2¢
LOAD 12-14, 61, 12¢, 136

(38, 156)
loading
cassette Applesoft 136-137
cassette programs 11-14, 12§,
136 (1¢6-1¢9)
diskette Applesoft 134-136

diskette programs 61, 12(
LOMEM: 14@-141, 144

163

looping 5@, 59, 62-67, 116-117
(11-14, 2¢)
incrementing 66, 116-117
(13, 78)
low-resolution graphics: see
graphics

M key (with ESC): see editing
memory 131-132, 137-138
(2, 8, 4¢, 41)
HGR2 118, 138, 142
map 14¢-142
requirements
menu 17
MIC or MICROPHONE jack 5
MID$ 1@1-1¢3, 121, 144
(26, 61, 156)
modes
debug: see TRACE
execution: see execution
modulator, RF 3-4
MON or MONITOR jack 5
Monitor program
entering 114,
Monitor ROM 2,
monitor, TV 3-4
moving the cursor 11,
53, 114, 116, 128-129
(5¢-52, 54, 55, 11¢-114, 131)
multiple statements on a line 81-82
‘19, 125)
multiplication

negative numbers 39-42
nested loops 66-67, 144
NEW 44-46, 121 (3, 8, 38,
NEXT: see FOR/NEXT
NORMAL 68, 121 (53,
NOT 57 (33, 34, 36)
NOTRACE 88, 121 (4@, 156)
null string 101
number format 25-26, 144
18, 22, 31-33)

(88)

135, 136, l4@-142

133, 148
147-149

27-29, 52-

23, 39-42 (2,

156)

156)

4, 5,

154

33, 36)

o

01d Monitor ROM 2,
one (in assertions)
OR 58-59 (33, 36)

P

paddle 34, 121
parentheses 41-42, 58, 106
pause: see delay loop

147-149
55-58

PDL 34-35, 48-51, 94-95, 121
(99, 157)
PEEK 8¢-81, 141, 144
(49, 131, 134-136, 157)
PLOT 3¢-33, 121
(5, 1¢, 24, 85, 157)
POKE 138, 144

power cord 3
POWER light 5
power switch 5
precedence of operators 39-42, 59
22-23, 35, 44, 122

(2, 6, 7, 78, 71, 157)

comma 68-7¢, 122

semi-colon 68-7¢, 122
program, definition of 47

prompt character 13, 17, 22, 133,
136 (35, 84, 1¢6, 1¢8)

PR# 16 (72, 158)

pure cursor moves 52-53, 116, 128

Q

question mark

INPUT 75-77 (7, 66, 67)
quotation marks

INPUT 76 (66)

PRINT 22, 27, 36

strings 10¢, 105 (19, 34)

random number function: see RND

REENTER 76

REM 63, 122 (8, 1¢, 5¢, 118,

Replacing lines: see editing

REPT key 1¢, 52, 122, 128
111-114, 158)

158)

(55,

reserved words 37, 126-127 (7, 8,
38, 64, 87, 148)

RESET key 6, 20, 51, 128, 147
recovering from 148-149
stopping a program 51 (39)

RETURN 87, 122
(15, 16, 79, 8@, 158)

RETURN key 1¢-11, 17, 26
(2, 3, 7, 35)

retype key 28-29, 53, 114, 128

RF modulator 3

RIGHTS 1@1, 122, 144
(2¢, 61, 158)

right-arrow key 11, 27-29, 53,
114, 128 (54, 55, 11¢-114, 150)

RND 82-85, 123
(18, 27, 162, 141, 159)

ROM-Applesoft: see Applesoft II
Firmware Card

rounding 25 (4, 5, 18, 19, 31-33)
with graphics 64

rows 29

RUN 13, 14, 16, 17, 2¢, &44-46, 51,
65, 123 (2, 8, 38, 39, 159)

S

SAVE 6@-62, 123 (38, 159)
saving programs
on diskette

on cassette tape
scientific notation 25-26
screen
clearing: see clearing the
screen
sketching screen program 63,
94
semi-colon 69, 76
INPUT 76 (66-67)
PRINT 69 (6, 7¢, 71)
setting the tape recorder

6¢-61, 123
61-62, 123
(4, 5)

(3¢, 33)

11-14

setting the TV color 18-19
SHIFT key 7
slots @ through 7 16, 134

(71, 72)
sounds, generating 78-81
spacing 69-71
speaker 79-81 (134, 135)
square bracket 11, 16, 22
statements, multiple
STEP 66, 116-117 (13, 78, 152)

81-82 (1@, 125)

stopping the computer 17
listings 75, 115, 120
programs 5@-51, 115
(7, 19, le6, 38, 39)
STRS$ 107, 124 (21, 22, 59, 160¢)
strings 100¢-1¢08 (18-23, 34)
concatenation 1¢5 (21, 52, 71)
INPUT 1¢2 (66, 67, 154, 155)
LEFTS 1¢1, 119 (2¢, 6¢, 155)
LEN 1¢@-1¢1, 12¢ (19, 2¢, 59,
155) '
MIDS 1¢1-1¢3, 121
(2¢, 21, 61, 156)
null strings 101
67, 69, 76, 77)
RIGHT $ 1¢l1-1¢2, 122
STRS 1¢7, 124
(21, 22, 59, 16@)
VAL 106-107, 124
(21, 23, 59, 161)
subroutine 85-91
(16, 22, 79, 80)
subscript 108, 144
(14, 15, 34, 58)
subtraction 23, 39-42
SYNTAX ERROR 11, 12, 22, 32, 37,
145
System Master diskette 15, 16,
134-135

T

tab
HTAB 7¢-71, 118 (5@, 51)
TAB 7¢-71, 124 (51, 16¢)
VTAB 7¢-71, 125 (50)
TEXT 3@, 62, 88 (6, 11, 84, 160)
THEN: see IF/THEN
TO: see HPLOT and GOTO
TRACE 87-88, 91, 124
(49, 82, 161)
TV monitor 3-4

U
\",

VAL 106-1¢7, 124 (21, 23, 59,
161)

(19, 6¢, 61,

165

variables 37-38, 89 (7, 8, 31-35)
array 108, 11¢ (14, 58)
FOR/NEXT loops 64-67, 116,117,

143, 144 (12, 13, 78, 79)
INPUT 75-77, 1¢2-1¢3, 119
(7, 9, 66, 67, 71)
integer 36-38 (18, 19, 31)
names 36-38, 1¢¢, 12¢
(7, 8, 14, 18 31-35)
- string 100-104, 12¢ (18)
vertical lines, plotting: see
VLIN '

VIDEO OUT jack &

VLIN 33-34, 124 (6, 25, 86, 161)

VTAB 7¢-71, 125 (27, 5¢, 161)

W
X

X coordinate 29, 64, 71, 85-87,
91, 95

Y

Y coordinate 29, 64, 71, 85-87,
91, 95

Z

zero 8, 22, 143
in assertions 55-58

156

167

appla computear Inc.

10260 Bandley Drive
Cupertino, California 95014

	The Applesoft Tutorial
	Table of Contents
	Welcome
	Ch. 1: Getting Started
	Introduction
	What You Will Need
	Hooking Up The TV
	Plugging In Game Controllers
	The Disk II
	The Cassette Recorder
	The Apple Keyboard
	Keyboard Notation
	Control & Other Unsavory Characters
	Setting The Tape Recorder
	The Usual Procedure for Loading Tapes
	A Helpful Hint
	Using A Disk Drive
	The Menu
	Stopping the Computer
	Setting the TV Color
	Playing Little Brick-Out

	Ch. 2: Beginning Applesoft
	First Look at the PRINT Statement
	Applesoft's Format for Numbers
	More about Return
	Easy Editing Features
	Putting Color on the Screen
	Plot Error Messages
	Drawing Lines
	The Game Controls
	Pigeonholes & More Calculator Abilities
	Precedence or Who's On First?
	How to Avoid Precedence

	Ch. 3: Elementary Programming
	Deferred Execution
	Elementary Editing
	Elementary Aerobatics
	Some More Things that Make Life Easier
	The Moving Cursor Having Writ Can Can Erase or Copy
	A Word About Learning Applesoft BASIC
	An Accident ABout to Happen
	The Truth
	Order or Precedence for Operations Used So Far
	The IF Statement
	Saving Programs on Diskette
	Saving Programs with a Cassette Recorder
	More Graphics Programs
	FOR/NEXT Loops
	A Wrong Program
	Last Example of Nested Loops
	Getting Flashy
	Prints Charming

	Ch. 4: Lots of Graphics
	Taking to a Program on the Run
	Off the Walls
	Making Sounds
	Noise for the Bouncing Ball
	For Higher Notes, Multiple Statements on One Line
	Random Notes
	Simulating a Pair of Dice
	Subroutines
	Traces
	A Better Horse-Drawing Subroutine
	High-Resolution Graphics

	Ch. 5: Strings & Arrays
	Stringing Along
	Concatenation Got Your Tongue?
	More String Functions
	Introduction Arrays
	Array Error Messages
	Conclusion

	Appendices
	A: Summary of Commands
	B: Reserved Words in Applesoft
	C: Editing Features
	Left & Right Arrow Keys
	Pure Cursor Moves
	Deleting Program Lines
	Clearing the Screen
	Summary of Editing Features

	D: Firware Applesoft vs Diskette or Cassette Applesoft
	Introduction
	General Discussion
	An Important Note
	Part 1. The Applesoft II Firmware Card
	Installation
	Using the Applesoft II Firmware Card

	Part 2. Diskette Applesoft
	Part 3. Cassette Tape Applesoft
	Getting Started

	Part 4. Differences between Diskette or Cassette & Firmware Applesoft
	Part 5. Memory Locations Used by DOS and Applesoft BASIC
	HIMEM Value Set by Booting DOS

	E: Error Messages
	F: The Old Monitor ROM
	Using the Old Monitor ROM
	Recovering from Accidental RESETs

	Index to the Applesoft Tutorial
	Back Cover

